mirror of
https://github.com/WongKinYiu/yolov7.git
synced 2024-11-27 03:29:56 +08:00
main code
update aux training
This commit is contained in:
parent
ec69700a9c
commit
bedf15a0b4
691
train_aux.py
Normal file
691
train_aux.py
Normal file
@ -0,0 +1,691 @@
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torch.optim.lr_scheduler as lr_scheduler
|
||||
import torch.utils.data
|
||||
import yaml
|
||||
from torch.cuda import amp
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
import test # import test.py to get mAP after each epoch
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.autoanchor import check_anchors
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||||
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
||||
check_requirements, print_mutation, set_logging, one_cycle, colorstr
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.loss import ComputeLoss, ComputeLossAuxOTA
|
||||
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
||||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
|
||||
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def train(hyp, opt, device, tb_writer=None):
|
||||
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
||||
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
|
||||
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
||||
|
||||
# Directories
|
||||
wdir = save_dir / 'weights'
|
||||
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||
last = wdir / 'last.pt'
|
||||
best = wdir / 'best.pt'
|
||||
results_file = save_dir / 'results.txt'
|
||||
|
||||
# Save run settings
|
||||
with open(save_dir / 'hyp.yaml', 'w') as f:
|
||||
yaml.dump(hyp, f, sort_keys=False)
|
||||
with open(save_dir / 'opt.yaml', 'w') as f:
|
||||
yaml.dump(vars(opt), f, sort_keys=False)
|
||||
|
||||
# Configure
|
||||
plots = not opt.evolve # create plots
|
||||
cuda = device.type != 'cpu'
|
||||
init_seeds(2 + rank)
|
||||
with open(opt.data) as f:
|
||||
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
||||
is_coco = opt.data.endswith('coco.yaml')
|
||||
|
||||
# Logging- Doing this before checking the dataset. Might update data_dict
|
||||
loggers = {'wandb': None} # loggers dict
|
||||
if rank in [-1, 0]:
|
||||
opt.hyp = hyp # add hyperparameters
|
||||
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
|
||||
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
|
||||
loggers['wandb'] = wandb_logger.wandb
|
||||
data_dict = wandb_logger.data_dict
|
||||
if wandb_logger.wandb:
|
||||
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
|
||||
|
||||
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
|
||||
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
||||
|
||||
# Model
|
||||
pretrained = weights.endswith('.pt')
|
||||
if pretrained:
|
||||
with torch_distributed_zero_first(rank):
|
||||
attempt_download(weights) # download if not found locally
|
||||
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
||||
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
|
||||
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||||
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
||||
model.load_state_dict(state_dict, strict=False) # load
|
||||
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||
else:
|
||||
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||
with torch_distributed_zero_first(rank):
|
||||
check_dataset(data_dict) # check
|
||||
train_path = data_dict['train']
|
||||
test_path = data_dict['val']
|
||||
|
||||
# Freeze
|
||||
freeze = [] # parameter names to freeze (full or partial)
|
||||
for k, v in model.named_parameters():
|
||||
v.requires_grad = True # train all layers
|
||||
if any(x in k for x in freeze):
|
||||
print('freezing %s' % k)
|
||||
v.requires_grad = False
|
||||
|
||||
# Optimizer
|
||||
nbs = 64 # nominal batch size
|
||||
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
||||
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
||||
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
|
||||
|
||||
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
||||
for k, v in model.named_modules():
|
||||
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
||||
pg2.append(v.bias) # biases
|
||||
if isinstance(v, nn.BatchNorm2d):
|
||||
pg0.append(v.weight) # no decay
|
||||
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
||||
pg1.append(v.weight) # apply decay
|
||||
if hasattr(v, 'im'):
|
||||
if hasattr(v.im, 'implicit'):
|
||||
pg0.append(v.im.implicit)
|
||||
else:
|
||||
for iv in v.im:
|
||||
pg0.append(iv.implicit)
|
||||
if hasattr(v, 'imc'):
|
||||
if hasattr(v.imc, 'implicit'):
|
||||
pg0.append(v.imc.implicit)
|
||||
else:
|
||||
for iv in v.imc:
|
||||
pg0.append(iv.implicit)
|
||||
if hasattr(v, 'imb'):
|
||||
if hasattr(v.imb, 'implicit'):
|
||||
pg0.append(v.imb.implicit)
|
||||
else:
|
||||
for iv in v.imb:
|
||||
pg0.append(iv.implicit)
|
||||
if hasattr(v, 'imo'):
|
||||
if hasattr(v.imo, 'implicit'):
|
||||
pg0.append(v.imo.implicit)
|
||||
else:
|
||||
for iv in v.imo:
|
||||
pg0.append(iv.implicit)
|
||||
if hasattr(v, 'ia'):
|
||||
if hasattr(v.ia, 'implicit'):
|
||||
pg0.append(v.ia.implicit)
|
||||
else:
|
||||
for iv in v.ia:
|
||||
pg0.append(iv.implicit)
|
||||
if hasattr(v, 'attn'):
|
||||
if hasattr(v.attn, 'logit_scale'):
|
||||
pg0.append(v.attn.logit_scale)
|
||||
if hasattr(v.attn, 'q_bias'):
|
||||
pg0.append(v.attn.q_bias)
|
||||
if hasattr(v.attn, 'v_bias'):
|
||||
pg0.append(v.attn.v_bias)
|
||||
if hasattr(v.attn, 'relative_position_bias_table'):
|
||||
pg0.append(v.attn.relative_position_bias_table)
|
||||
if hasattr(v, 'rbr_dense'):
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_origin'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_origin)
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_avg_conv)
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
|
||||
if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
|
||||
pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
|
||||
if hasattr(v.rbr_dense, 'vector'):
|
||||
pg0.append(v.rbr_dense.vector)
|
||||
|
||||
if opt.adam:
|
||||
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
||||
else:
|
||||
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
||||
|
||||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||||
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
||||
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||||
del pg0, pg1, pg2
|
||||
|
||||
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
||||
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
||||
if opt.linear_lr:
|
||||
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
||||
else:
|
||||
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
||||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||||
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||
|
||||
# EMA
|
||||
ema = ModelEMA(model) if rank in [-1, 0] else None
|
||||
|
||||
# Resume
|
||||
start_epoch, best_fitness = 0, 0.0
|
||||
if pretrained:
|
||||
# Optimizer
|
||||
if ckpt['optimizer'] is not None:
|
||||
optimizer.load_state_dict(ckpt['optimizer'])
|
||||
best_fitness = ckpt['best_fitness']
|
||||
|
||||
# EMA
|
||||
if ema and ckpt.get('ema'):
|
||||
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
|
||||
ema.updates = ckpt['updates']
|
||||
|
||||
# Results
|
||||
if ckpt.get('training_results') is not None:
|
||||
results_file.write_text(ckpt['training_results']) # write results.txt
|
||||
|
||||
# Epochs
|
||||
start_epoch = ckpt['epoch'] + 1
|
||||
if opt.resume:
|
||||
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
||||
if epochs < start_epoch:
|
||||
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||||
(weights, ckpt['epoch'], epochs))
|
||||
epochs += ckpt['epoch'] # finetune additional epochs
|
||||
|
||||
del ckpt, state_dict
|
||||
|
||||
# Image sizes
|
||||
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
|
||||
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
||||
|
||||
# DP mode
|
||||
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# SyncBatchNorm
|
||||
if opt.sync_bn and cuda and rank != -1:
|
||||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||
logger.info('Using SyncBatchNorm()')
|
||||
|
||||
# Trainloader
|
||||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
||||
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
|
||||
world_size=opt.world_size, workers=opt.workers,
|
||||
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
|
||||
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
||||
nb = len(dataloader) # number of batches
|
||||
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
||||
|
||||
# Process 0
|
||||
if rank in [-1, 0]:
|
||||
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
|
||||
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
|
||||
world_size=opt.world_size, workers=opt.workers,
|
||||
pad=0.5, prefix=colorstr('val: '))[0]
|
||||
|
||||
if not opt.resume:
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
c = torch.tensor(labels[:, 0]) # classes
|
||||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||||
# model._initialize_biases(cf.to(device))
|
||||
if plots:
|
||||
#plot_labels(labels, names, save_dir, loggers)
|
||||
if tb_writer:
|
||||
tb_writer.add_histogram('classes', c, 0)
|
||||
|
||||
# Anchors
|
||||
if not opt.noautoanchor:
|
||||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||
model.half().float() # pre-reduce anchor precision
|
||||
|
||||
# DDP mode
|
||||
if cuda and rank != -1:
|
||||
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
|
||||
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
|
||||
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
|
||||
|
||||
# Model parameters
|
||||
hyp['box'] *= 3. / nl # scale to layers
|
||||
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
|
||||
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
|
||||
hyp['label_smoothing'] = opt.label_smoothing
|
||||
model.nc = nc # attach number of classes to model
|
||||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||
model.names = names
|
||||
|
||||
# Start training
|
||||
t0 = time.time()
|
||||
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = amp.GradScaler(enabled=cuda)
|
||||
compute_loss_ota = ComputeLossAuxOTA(model) # init loss class
|
||||
compute_loss = ComputeLoss(model) # init loss class
|
||||
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
|
||||
f'Using {dataloader.num_workers} dataloader workers\n'
|
||||
f'Logging results to {save_dir}\n'
|
||||
f'Starting training for {epochs} epochs...')
|
||||
torch.save(model, wdir / 'init.pt')
|
||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||
model.train()
|
||||
|
||||
# Update image weights (optional)
|
||||
if opt.image_weights:
|
||||
# Generate indices
|
||||
if rank in [-1, 0]:
|
||||
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||||
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||||
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||||
# Broadcast if DDP
|
||||
if rank != -1:
|
||||
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
|
||||
dist.broadcast(indices, 0)
|
||||
if rank != 0:
|
||||
dataset.indices = indices.cpu().numpy()
|
||||
|
||||
# Update mosaic border
|
||||
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||
|
||||
mloss = torch.zeros(4, device=device) # mean losses
|
||||
if rank != -1:
|
||||
dataloader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(dataloader)
|
||||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
|
||||
if rank in [-1, 0]:
|
||||
pbar = tqdm(pbar, total=nb) # progress bar
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||
ni = i + nb * epoch # number integrated batches (since train start)
|
||||
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
||||
|
||||
# Warmup
|
||||
if ni <= nw:
|
||||
xi = [0, nw] # x interp
|
||||
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
||||
for j, x in enumerate(optimizer.param_groups):
|
||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||
if 'momentum' in x:
|
||||
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
||||
|
||||
# Multi-scale
|
||||
if opt.multi_scale:
|
||||
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
||||
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||
if sf != 1:
|
||||
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||
|
||||
# Forward
|
||||
with amp.autocast(enabled=cuda):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
|
||||
if rank != -1:
|
||||
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
||||
if opt.quad:
|
||||
loss *= 4.
|
||||
|
||||
# Backward
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# Optimize
|
||||
if ni % accumulate == 0:
|
||||
scaler.step(optimizer) # optimizer.step
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
if ema:
|
||||
ema.update(model)
|
||||
|
||||
# Print
|
||||
if rank in [-1, 0]:
|
||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
||||
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||
pbar.set_description(s)
|
||||
|
||||
# Plot
|
||||
if plots and ni < 10:
|
||||
f = save_dir / f'train_batch{ni}.jpg' # filename
|
||||
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
||||
# if tb_writer:
|
||||
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||||
# tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
|
||||
elif plots and ni == 10 and wandb_logger.wandb:
|
||||
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
|
||||
save_dir.glob('train*.jpg') if x.exists()]})
|
||||
|
||||
# end batch ------------------------------------------------------------------------------------------------
|
||||
# end epoch ----------------------------------------------------------------------------------------------------
|
||||
|
||||
# Scheduler
|
||||
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
||||
scheduler.step()
|
||||
|
||||
# DDP process 0 or single-GPU
|
||||
if rank in [-1, 0]:
|
||||
# mAP
|
||||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
|
||||
final_epoch = epoch + 1 == epochs
|
||||
if not opt.notest or final_epoch: # Calculate mAP
|
||||
wandb_logger.current_epoch = epoch + 1
|
||||
results, maps, times = test.test(data_dict,
|
||||
batch_size=batch_size * 2,
|
||||
imgsz=imgsz_test,
|
||||
model=ema.ema,
|
||||
single_cls=opt.single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
verbose=nc < 50 and final_epoch,
|
||||
plots=plots and final_epoch,
|
||||
wandb_logger=wandb_logger,
|
||||
compute_loss=compute_loss,
|
||||
is_coco=is_coco)
|
||||
|
||||
# Write
|
||||
with open(results_file, 'a') as f:
|
||||
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
|
||||
if len(opt.name) and opt.bucket:
|
||||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||
|
||||
# Log
|
||||
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||||
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||||
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
||||
if tb_writer:
|
||||
tb_writer.add_scalar(tag, x, epoch) # tensorboard
|
||||
if wandb_logger.wandb:
|
||||
wandb_logger.log({tag: x}) # W&B
|
||||
|
||||
# Update best mAP
|
||||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
wandb_logger.end_epoch(best_result=best_fitness == fi)
|
||||
|
||||
# Save model
|
||||
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
|
||||
ckpt = {'epoch': epoch,
|
||||
'best_fitness': best_fitness,
|
||||
'training_results': results_file.read_text(),
|
||||
'model': deepcopy(model.module if is_parallel(model) else model).half(),
|
||||
'ema': deepcopy(ema.ema).half(),
|
||||
'updates': ema.updates,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
|
||||
|
||||
# Save last, best and delete
|
||||
torch.save(ckpt, last)
|
||||
if best_fitness == fi:
|
||||
torch.save(ckpt, best)
|
||||
if (best_fitness == fi) and (epoch >= 200):
|
||||
torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
|
||||
if epoch == 0:
|
||||
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
|
||||
elif ((epoch+1) % 25) == 0:
|
||||
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
|
||||
elif epoch >= (epochs-5):
|
||||
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
|
||||
if wandb_logger.wandb:
|
||||
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
|
||||
wandb_logger.log_model(
|
||||
last.parent, opt, epoch, fi, best_model=best_fitness == fi)
|
||||
del ckpt
|
||||
|
||||
# end epoch ----------------------------------------------------------------------------------------------------
|
||||
# end training
|
||||
if rank in [-1, 0]:
|
||||
# Plots
|
||||
if plots:
|
||||
plot_results(save_dir=save_dir) # save as results.png
|
||||
if wandb_logger.wandb:
|
||||
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
||||
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
|
||||
if (save_dir / f).exists()]})
|
||||
# Test best.pt
|
||||
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
||||
for m in (last, best) if best.exists() else (last): # speed, mAP tests
|
||||
results, _, _ = test.test(opt.data,
|
||||
batch_size=batch_size * 2,
|
||||
imgsz=imgsz_test,
|
||||
conf_thres=0.001,
|
||||
iou_thres=0.7,
|
||||
model=attempt_load(m, device).half(),
|
||||
single_cls=opt.single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=True,
|
||||
plots=False,
|
||||
is_coco=is_coco)
|
||||
|
||||
# Strip optimizers
|
||||
final = best if best.exists() else last # final model
|
||||
for f in last, best:
|
||||
if f.exists():
|
||||
strip_optimizer(f) # strip optimizers
|
||||
if opt.bucket:
|
||||
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
|
||||
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
|
||||
wandb_logger.wandb.log_artifact(str(final), type='model',
|
||||
name='run_' + wandb_logger.wandb_run.id + '_model',
|
||||
aliases=['last', 'best', 'stripped'])
|
||||
wandb_logger.finish_run()
|
||||
else:
|
||||
dist.destroy_process_group()
|
||||
torch.cuda.empty_cache()
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path')
|
||||
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
||||
parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
|
||||
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
|
||||
parser.add_argument('--epochs', type=int, default=300)
|
||||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
||||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
|
||||
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
||||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
||||
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
||||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||||
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
||||
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
||||
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||||
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
||||
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
||||
parser.add_argument('--entity', default=None, help='W&B entity')
|
||||
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
||||
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
|
||||
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
||||
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
|
||||
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
|
||||
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
|
||||
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
|
||||
opt = parser.parse_args()
|
||||
|
||||
# Set DDP variables
|
||||
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
||||
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
||||
set_logging(opt.global_rank)
|
||||
#if opt.global_rank in [-1, 0]:
|
||||
# check_git_status()
|
||||
# check_requirements()
|
||||
|
||||
# Resume
|
||||
wandb_run = check_wandb_resume(opt)
|
||||
if opt.resume and not wandb_run: # resume an interrupted run
|
||||
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
||||
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
||||
apriori = opt.global_rank, opt.local_rank
|
||||
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
||||
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
|
||||
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
|
||||
logger.info('Resuming training from %s' % ckpt)
|
||||
else:
|
||||
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
|
||||
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
||||
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||||
opt.name = 'evolve' if opt.evolve else opt.name
|
||||
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
||||
|
||||
# DDP mode
|
||||
opt.total_batch_size = opt.batch_size
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
if opt.local_rank != -1:
|
||||
assert torch.cuda.device_count() > opt.local_rank
|
||||
torch.cuda.set_device(opt.local_rank)
|
||||
device = torch.device('cuda', opt.local_rank)
|
||||
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||||
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
||||
opt.batch_size = opt.total_batch_size // opt.world_size
|
||||
|
||||
# Hyperparameters
|
||||
with open(opt.hyp) as f:
|
||||
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
|
||||
|
||||
# Train
|
||||
logger.info(opt)
|
||||
if not opt.evolve:
|
||||
tb_writer = None # init loggers
|
||||
if opt.global_rank in [-1, 0]:
|
||||
prefix = colorstr('tensorboard: ')
|
||||
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
|
||||
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
|
||||
train(hyp, opt, device, tb_writer)
|
||||
|
||||
# Evolve hyperparameters (optional)
|
||||
else:
|
||||
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||||
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
||||
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||||
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||||
'box': (1, 0.02, 0.2), # box loss gain
|
||||
'cls': (1, 0.2, 4.0), # cls loss gain
|
||||
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||||
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
||||
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
||||
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
||||
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
||||
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
||||
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
||||
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
||||
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
||||
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
||||
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
|
||||
|
||||
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
|
||||
opt.notest, opt.nosave = True, True # only test/save final epoch
|
||||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
|
||||
if opt.bucket:
|
||||
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
||||
|
||||
for _ in range(300): # generations to evolve
|
||||
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
|
||||
# Select parent(s)
|
||||
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
n = min(5, len(x)) # number of previous results to consider
|
||||
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||
w = fitness(x) - fitness(x).min() # weights
|
||||
if parent == 'single' or len(x) == 1:
|
||||
# x = x[random.randint(0, n - 1)] # random selection
|
||||
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||
elif parent == 'weighted':
|
||||
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||
|
||||
# Mutate
|
||||
mp, s = 0.8, 0.2 # mutation probability, sigma
|
||||
npr = np.random
|
||||
npr.seed(int(time.time()))
|
||||
g = np.array([x[0] for x in meta.values()]) # gains 0-1
|
||||
ng = len(meta)
|
||||
v = np.ones(ng)
|
||||
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||||
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||||
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
||||
|
||||
# Constrain to limits
|
||||
for k, v in meta.items():
|
||||
hyp[k] = max(hyp[k], v[1]) # lower limit
|
||||
hyp[k] = min(hyp[k], v[2]) # upper limit
|
||||
hyp[k] = round(hyp[k], 5) # significant digits
|
||||
|
||||
# Train mutation
|
||||
results = train(hyp.copy(), opt, device)
|
||||
|
||||
# Write mutation results
|
||||
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
||||
|
||||
# Plot results
|
||||
plot_evolution(yaml_file)
|
||||
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||||
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|
Loading…
Reference in New Issue
Block a user