uv-k5-firmware/app/uart.c
2023-10-14 19:48:36 +01:00

539 lines
11 KiB
C

/* Copyright 2023 Dual Tachyon
* https://github.com/DualTachyon
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#if !defined(ENABLE_OVERLAY)
#include "ARMCM0.h"
#endif
#if defined(ENABLE_FMRADIO)
#include "app/fm.h"
#endif
#include "app/uart.h"
#include "board.h"
#include "bsp/dp32g030/dma.h"
#include "bsp/dp32g030/gpio.h"
#include "driver/aes.h"
#include "driver/bk4819.h"
#include "driver/crc.h"
#include "driver/eeprom.h"
#include "driver/gpio.h"
#include "driver/uart.h"
#include "functions.h"
#include "misc.h"
#include "settings.h"
#if defined(ENABLE_OVERLAY)
#include "sram-overlay.h"
#endif
#include "version.h"
#define DMA_INDEX(x, y) (((x) + (y)) % sizeof(UART_DMA_Buffer))
typedef struct {
uint16_t ID;
uint16_t Size;
} Header_t;
typedef struct {
uint8_t Padding[2];
uint16_t ID;
} Footer_t;
typedef struct {
Header_t Header;
uint32_t Timestamp;
} CMD_0514_t;
typedef struct {
Header_t Header;
struct {
char Version[16];
bool bHasCustomAesKey;
bool bIsInLockScreen;
uint8_t Padding[2];
uint32_t Challenge[4];
} Data;
} REPLY_0514_t;
typedef struct {
Header_t Header;
uint16_t Offset;
uint8_t Size;
uint8_t Padding;
uint32_t Timestamp;
} CMD_051B_t;
typedef struct {
Header_t Header;
struct {
uint16_t Offset;
uint8_t Size;
uint8_t Padding;
uint8_t Data[128];
} Data;
} REPLY_051B_t;
typedef struct {
Header_t Header;
uint16_t Offset;
uint8_t Size;
bool bAllowPassword;
uint32_t Timestamp;
uint8_t Data[0];
} CMD_051D_t;
typedef struct {
Header_t Header;
struct {
uint16_t Offset;
} Data;
} REPLY_051D_t;
typedef struct {
Header_t Header;
struct {
uint16_t RSSI;
uint8_t ExNoiseIndicator;
uint8_t GlitchIndicator;
} Data;
} REPLY_0527_t;
typedef struct {
Header_t Header;
struct {
uint16_t Voltage;
uint16_t Current;
} Data;
} REPLY_0529_t;
typedef struct {
Header_t Header;
uint32_t Response[4];
} CMD_052D_t;
typedef struct {
Header_t Header;
struct {
bool bIsLocked;
uint8_t Padding[3];
} Data;
} REPLY_052D_t;
typedef struct {
Header_t Header;
uint32_t Timestamp;
} CMD_052F_t;
static const uint8_t Obfuscation[16] = { 0x16, 0x6C, 0x14, 0xE6, 0x2E, 0x91, 0x0D, 0x40, 0x21, 0x35, 0xD5, 0x40, 0x13, 0x03, 0xE9, 0x80 };
static union {
uint8_t Buffer[256];
struct {
Header_t Header;
uint8_t Data[252];
};
} UART_Command;
static uint32_t Timestamp;
static uint16_t gUART_WriteIndex;
static bool bIsEncrypted = true;
static void SendReply(void *pReply, uint16_t Size)
{
Header_t Header;
Footer_t Footer;
uint8_t *pBytes;
uint16_t i;
if (bIsEncrypted) {
pBytes = (uint8_t *)pReply;
for (i = 0; i < Size; i++) {
pBytes[i] ^= Obfuscation[i % 16];
}
}
Header.ID = 0xCDAB;
Header.Size = Size;
UART_Send(&Header, sizeof(Header));
UART_Send(pReply, Size);
if (bIsEncrypted) {
Footer.Padding[0] = Obfuscation[(Size + 0) % 16] ^ 0xFF;
Footer.Padding[1] = Obfuscation[(Size + 1) % 16] ^ 0xFF;
} else {
Footer.Padding[0] = 0xFF;
Footer.Padding[1] = 0xFF;
}
Footer.ID = 0xBADC;
UART_Send(&Footer, sizeof(Footer));
}
static void SendVersion(void)
{
REPLY_0514_t Reply;
Reply.Header.ID = 0x0515;
Reply.Header.Size = sizeof(Reply.Data);
strcpy(Reply.Data.Version, Version);
Reply.Data.bHasCustomAesKey = bHasCustomAesKey;
Reply.Data.bIsInLockScreen = bIsInLockScreen;
Reply.Data.Challenge[0] = gChallenge[0];
Reply.Data.Challenge[1] = gChallenge[1];
Reply.Data.Challenge[2] = gChallenge[2];
Reply.Data.Challenge[3] = gChallenge[3];
SendReply(&Reply, sizeof(Reply));
}
static bool IsBadChallenge(const uint32_t *pKey, const uint32_t *pIn, const uint32_t *pResponse)
{
uint8_t i;
uint32_t IV[4];
IV[0] = 0;
IV[1] = 0;
IV[2] = 0;
IV[3] = 0;
AES_Encrypt(pKey, IV, pIn, IV, true);
for (i = 0; i < 4; i++) {
if (IV[i] != pResponse[i]) {
return true;
}
}
return false;
}
static void CMD_0514(const uint8_t *pBuffer)
{
const CMD_0514_t *pCmd = (const CMD_0514_t *)pBuffer;
Timestamp = pCmd->Timestamp;
#if defined(ENABLE_FMRADIO)
gFmRadioCountdown = 4;
#endif
GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_BACKLIGHT);
SendVersion();
}
static void CMD_051B(const uint8_t *pBuffer)
{
const CMD_051B_t *pCmd = (const CMD_051B_t *)pBuffer;
REPLY_051B_t Reply;
bool bLocked = false;
if (pCmd->Timestamp != Timestamp) {
return;
}
#if defined(ENABLE_FMRADIO)
gFmRadioCountdown = 4;
#endif
memset(&Reply, 0, sizeof(Reply));
Reply.Header.ID = 0x051C;
Reply.Header.Size = pCmd->Size + 4;
Reply.Data.Offset = pCmd->Offset;
Reply.Data.Size = pCmd->Size;
if (bHasCustomAesKey) {
bLocked = gIsLocked;
}
if (!bLocked) {
EEPROM_ReadBuffer(pCmd->Offset, Reply.Data.Data, pCmd->Size);
}
SendReply(&Reply, pCmd->Size + 8);
}
static void CMD_051D(const uint8_t *pBuffer)
{
const CMD_051D_t *pCmd = (const CMD_051D_t *)pBuffer;
REPLY_051D_t Reply;
bool bReloadEeprom;
bool bIsLocked;
if (pCmd->Timestamp != Timestamp) {
return;
}
bReloadEeprom = false;
#if defined(ENABLE_FMRADIO)
gFmRadioCountdown = 4;
#endif
Reply.Header.ID = 0x051E;
Reply.Header.Size = sizeof(Reply.Data);
Reply.Data.Offset = pCmd->Offset;
bIsLocked = bHasCustomAesKey;
if (bHasCustomAesKey) {
bIsLocked = gIsLocked;
}
if (!bIsLocked) {
uint16_t i;
for (i = 0; i < (pCmd->Size / 8U); i++) {
uint16_t Offset = pCmd->Offset + (i * 8U);
if (Offset >= 0x0F30 && Offset < 0x0F40) {
if (!gIsLocked) {
bReloadEeprom = true;
}
}
if ((Offset < 0x0E98 || Offset >= 0x0EA0) || !bIsInLockScreen || pCmd->bAllowPassword) {
EEPROM_WriteBuffer(Offset, &pCmd->Data[i * 8U]);
}
}
if (bReloadEeprom) {
BOARD_EEPROM_Init();
}
}
SendReply(&Reply, sizeof(Reply));
}
static void CMD_0527(void)
{
REPLY_0527_t Reply;
Reply.Header.ID = 0x0528;
Reply.Header.Size = sizeof(Reply.Data);
Reply.Data.RSSI = BK4819_ReadRegister(BK4819_REG_67) & 0x01FF;
Reply.Data.ExNoiseIndicator = BK4819_ReadRegister(BK4819_REG_65) & 0x007F;
Reply.Data.GlitchIndicator = BK4819_ReadRegister(BK4819_REG_63);
SendReply(&Reply, sizeof(Reply));
}
static void CMD_0529(void)
{
REPLY_0529_t Reply;
Reply.Header.ID = 0x52A;
Reply.Header.Size = sizeof(Reply.Data);
// Original doesn't actually send current!
BOARD_ADC_GetBatteryInfo(&Reply.Data.Voltage, &Reply.Data.Current);
SendReply(&Reply, sizeof(Reply));
}
static void CMD_052D(const uint8_t *pBuffer)
{
const CMD_052D_t *pCmd = (const CMD_052D_t *)pBuffer;
REPLY_052D_t Reply;
bool bIsLocked;
#if defined(ENABLE_FMRADIO)
gFmRadioCountdown = 4;
#endif
Reply.Header.ID = 0x052E;
Reply.Header.Size = sizeof(Reply.Data);
bIsLocked = bHasCustomAesKey;
if (!bIsLocked) {
bIsLocked = IsBadChallenge(gCustomAesKey, gChallenge, pCmd->Response);
}
if (!bIsLocked) {
bIsLocked = IsBadChallenge(gDefaultAesKey, gChallenge, pCmd->Response);
if (bIsLocked) {
gTryCount++;
}
}
if (gTryCount < 3) {
if (!bIsLocked) {
gTryCount = 0;
}
} else {
gTryCount = 3;
bIsLocked = true;
}
gIsLocked = bIsLocked;
Reply.Data.bIsLocked = bIsLocked;
SendReply(&Reply, sizeof(Reply));
}
static void CMD_052F(const uint8_t *pBuffer)
{
const CMD_052F_t *pCmd = (const CMD_052F_t *)pBuffer;
gEeprom.DUAL_WATCH = DUAL_WATCH_OFF;
gEeprom.CROSS_BAND_RX_TX = CROSS_BAND_OFF;
gEeprom.RX_VFO = 0;
gEeprom.DTMF_SIDE_TONE = false;
gEeprom.VfoInfo[0].FrequencyReverse = false;
gEeprom.VfoInfo[0].pRX = &gEeprom.VfoInfo[0].ConfigRX;
gEeprom.VfoInfo[0].pTX = &gEeprom.VfoInfo[0].ConfigTX;
gEeprom.VfoInfo[0].FREQUENCY_DEVIATION_SETTING = FREQUENCY_DEVIATION_OFF;
gEeprom.VfoInfo[0].DTMF_PTT_ID_TX_MODE = PTT_ID_OFF;
gEeprom.VfoInfo[0].DTMF_DECODING_ENABLE = false;
#if defined(ENABLE_NOAA)
gIsNoaaMode = false;
#endif
if (gCurrentFunction == FUNCTION_POWER_SAVE) {
FUNCTION_Select(FUNCTION_FOREGROUND);
}
Timestamp = pCmd->Timestamp;
GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_BACKLIGHT);
SendVersion();
}
bool UART_IsCommandAvailable(void)
{
uint16_t DmaLength;
uint16_t CommandLength;
uint16_t Index;
uint16_t TailIndex;
uint16_t Size;
uint16_t CRC;
uint16_t i;
DmaLength = DMA_CH0->ST & 0xFFFU;
while (1) {
if (gUART_WriteIndex == DmaLength) {
return false;
}
while (gUART_WriteIndex != DmaLength && UART_DMA_Buffer[gUART_WriteIndex] != 0xABU) {
gUART_WriteIndex = DMA_INDEX(gUART_WriteIndex, 1);
}
if (gUART_WriteIndex == DmaLength) {
return false;
}
if (gUART_WriteIndex < DmaLength) {
CommandLength = DmaLength - gUART_WriteIndex;
} else {
CommandLength = (DmaLength + sizeof(UART_DMA_Buffer)) - gUART_WriteIndex;
}
if (CommandLength < 8) {
return 0;
}
if (UART_DMA_Buffer[DMA_INDEX(gUART_WriteIndex, 1)] == 0xCD) {
break;
}
gUART_WriteIndex = DMA_INDEX(gUART_WriteIndex, 1);
}
Index = DMA_INDEX(gUART_WriteIndex, 2);
Size = (UART_DMA_Buffer[DMA_INDEX(Index, 1)] << 8) | UART_DMA_Buffer[Index];
if (Size + 8 > sizeof(UART_DMA_Buffer)) {
gUART_WriteIndex = DmaLength;
return false;
}
if (CommandLength < Size + 8) {
return false;
}
Index = DMA_INDEX(Index, 2);
TailIndex = DMA_INDEX(Index, Size + 2);
if (UART_DMA_Buffer[TailIndex] != 0xDC || UART_DMA_Buffer[DMA_INDEX(TailIndex, 1)] != 0xBA) {
gUART_WriteIndex = DmaLength;
return false;
}
if (TailIndex < Index) {
uint16_t ChunkSize = sizeof(UART_DMA_Buffer) - Index;
memcpy(UART_Command.Buffer, UART_DMA_Buffer + Index, ChunkSize);
memcpy(UART_Command.Buffer + ChunkSize, UART_DMA_Buffer, TailIndex);
} else {
memcpy(UART_Command.Buffer, UART_DMA_Buffer + Index, TailIndex - Index);
}
TailIndex = DMA_INDEX(TailIndex, 2);
if (TailIndex < gUART_WriteIndex) {
memset(UART_DMA_Buffer + gUART_WriteIndex, 0, sizeof(UART_DMA_Buffer) - gUART_WriteIndex);
memset(UART_DMA_Buffer, 0, TailIndex);
} else {
memset(UART_DMA_Buffer + gUART_WriteIndex, 0, TailIndex - gUART_WriteIndex);
}
gUART_WriteIndex = TailIndex;
if (UART_Command.Header.ID == 0x0514) {
bIsEncrypted = false;
}
if (UART_Command.Header.ID == 0x6902) {
bIsEncrypted = true;
}
if (bIsEncrypted) {
for (i = 0; i < Size + 2; i++) {
UART_Command.Buffer[i] ^= Obfuscation[i % 16];
}
}
CRC = UART_Command.Buffer[Size] | (UART_Command.Buffer[Size + 1] << 8);
if (CRC_Calculate(UART_Command.Buffer, Size) != CRC) {
return false;
}
return true;
}
void UART_HandleCommand(void)
{
switch (UART_Command.Header.ID) {
case 0x0514:
CMD_0514(UART_Command.Buffer);
break;
case 0x051B:
CMD_051B(UART_Command.Buffer);
break;
case 0x051D:
CMD_051D(UART_Command.Buffer);
break;
case 0x051F:
// Not implementing non-authentic command
break;
case 0x0521:
// Not implementing non-authentic command
break;
case 0x0527:
CMD_0527();
break;
case 0x0529:
CMD_0529();
break;
case 0x052D:
CMD_052D(UART_Command.Buffer);
break;
case 0x052F:
CMD_052F(UART_Command.Buffer);
break;
case 0x05DD:
#if defined(ENABLE_OVERLAY)
overlay_FLASH_RebootToBootloader();
#else
NVIC_SystemReset();
#endif
break;
}
}