mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 14:35:25 +08:00
169 lines
6.7 KiB
Python
169 lines
6.7 KiB
Python
from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
|
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
|
from modules.sd_samplers import all_samplers
|
|
import modules.shared as shared
|
|
import uvicorn
|
|
from fastapi import APIRouter, HTTPException
|
|
import json
|
|
import io
|
|
import base64
|
|
from modules.api.models import *
|
|
from PIL import Image
|
|
from modules.extras import run_extras
|
|
from gradio import processing_utils
|
|
|
|
def upscaler_to_index(name: str):
|
|
try:
|
|
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
|
except:
|
|
raise HTTPException(status_code=400, detail="Upscaler not found")
|
|
|
|
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
|
|
|
# def img_to_base64(img: str):
|
|
# buffer = io.BytesIO()
|
|
# img.save(buffer, format="png")
|
|
# return base64.b64encode(buffer.getvalue())
|
|
|
|
# def base64_to_bytes(base64Img: str):
|
|
# if "," in base64Img:
|
|
# base64Img = base64Img.split(",")[1]
|
|
# return io.BytesIO(base64.b64decode(base64Img))
|
|
|
|
# def base64_to_images(base64Imgs: list[str]):
|
|
# imgs = []
|
|
# for img in base64Imgs:
|
|
# img = Image.open(base64_to_bytes(img))
|
|
# imgs.append(img)
|
|
# return imgs
|
|
|
|
class ImageToImageResponse(BaseModel):
|
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
|
parameters: dict
|
|
info: str
|
|
|
|
|
|
class Api:
|
|
def __init__(self, app, queue_lock):
|
|
self.router = APIRouter()
|
|
self.app = app
|
|
self.queue_lock = queue_lock
|
|
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
|
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
|
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
|
self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
|
|
|
# def __base64_to_image(self, base64_string):
|
|
# # if has a comma, deal with prefix
|
|
# if "," in base64_string:
|
|
# base64_string = base64_string.split(",")[1]
|
|
# imgdata = base64.b64decode(base64_string)
|
|
# # convert base64 to PIL image
|
|
# return Image.open(io.BytesIO(imgdata))
|
|
|
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
|
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
|
|
|
if sampler_index is None:
|
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
|
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
|
"sd_model": shared.sd_model,
|
|
"sampler_index": sampler_index[0],
|
|
"do_not_save_samples": True,
|
|
"do_not_save_grid": True
|
|
}
|
|
)
|
|
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
|
# Override object param
|
|
with self.queue_lock:
|
|
processed = process_images(p)
|
|
|
|
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
|
|
|
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.info)
|
|
|
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
|
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
|
|
|
if sampler_index is None:
|
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
|
|
|
|
init_images = img2imgreq.init_images
|
|
if init_images is None:
|
|
raise HTTPException(status_code=404, detail="Init image not found")
|
|
|
|
mask = img2imgreq.mask
|
|
if mask:
|
|
mask = processing_utils.decode_base64_to_image(mask)
|
|
|
|
|
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
|
"sd_model": shared.sd_model,
|
|
"sampler_index": sampler_index[0],
|
|
"do_not_save_samples": True,
|
|
"do_not_save_grid": True,
|
|
"mask": mask
|
|
}
|
|
)
|
|
p = StableDiffusionProcessingImg2Img(**vars(populate))
|
|
|
|
imgs = []
|
|
for img in init_images:
|
|
img = processing_utils.decode_base64_to_image(img)
|
|
imgs = [img] * p.batch_size
|
|
|
|
p.init_images = imgs
|
|
# Override object param
|
|
with self.queue_lock:
|
|
processed = process_images(p)
|
|
|
|
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
|
# for i in processed.images:
|
|
# buffer = io.BytesIO()
|
|
# i.save(buffer, format="png")
|
|
# b64images.append(base64.b64encode(buffer.getvalue()))
|
|
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info)
|
|
|
|
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
|
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
|
upscaler2Index = upscaler_to_index(req.upscaler_2)
|
|
|
|
reqDict = vars(req)
|
|
reqDict.pop('upscaler_1')
|
|
reqDict.pop('upscaler_2')
|
|
|
|
reqDict['image'] = processing_utils.decode_base64_to_file(reqDict['image'])
|
|
|
|
with self.queue_lock:
|
|
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="")
|
|
|
|
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0]), html_info_x=result[1], html_info=result[2])
|
|
|
|
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
|
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
|
upscaler2Index = upscaler_to_index(req.upscaler_2)
|
|
|
|
reqDict = vars(req)
|
|
reqDict.pop('upscaler_1')
|
|
reqDict.pop('upscaler_2')
|
|
|
|
reqDict['image_folder'] = list(map(processing_utils.decode_base64_to_file, reqDict['imageList']))
|
|
reqDict.pop('imageList')
|
|
|
|
with self.queue_lock:
|
|
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=1, image="", input_dir="", output_dir="")
|
|
|
|
return ExtrasBatchImagesResponse(images=list(map(processing_utils.encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2])
|
|
|
|
def extras_folder_processing_api(self):
|
|
raise NotImplementedError
|
|
|
|
def pnginfoapi(self):
|
|
raise NotImplementedError
|
|
|
|
def launch(self, server_name, port):
|
|
self.app.include_router(self.router)
|
|
uvicorn.run(self.app, host=server_name, port=port)
|