mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 14:35:25 +08:00
153 lines
5.4 KiB
Python
153 lines
5.4 KiB
Python
from modules.api.models import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI, InterrogateAPI
|
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
|
from modules.sd_samplers import all_samplers
|
|
from modules.extras import run_pnginfo
|
|
import modules.shared as shared
|
|
import uvicorn
|
|
from fastapi import Body, APIRouter, HTTPException
|
|
from fastapi.responses import JSONResponse
|
|
from pydantic import BaseModel, Field, Json
|
|
from typing import List
|
|
import json
|
|
import io
|
|
import base64
|
|
from PIL import Image
|
|
|
|
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
|
|
|
class TextToImageResponse(BaseModel):
|
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
|
parameters: Json
|
|
info: Json
|
|
|
|
class ImageToImageResponse(BaseModel):
|
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
|
parameters: Json
|
|
info: Json
|
|
|
|
class InterrogateResponse(BaseModel):
|
|
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
|
parameters: Json
|
|
info: Json
|
|
|
|
|
|
class Api:
|
|
def __init__(self, app, queue_lock):
|
|
self.router = APIRouter()
|
|
self.app = app
|
|
self.queue_lock = queue_lock
|
|
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
|
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
|
|
self.app.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
|
|
|
def __base64_to_image(self, base64_string):
|
|
# if has a comma, deal with prefix
|
|
if "," in base64_string:
|
|
base64_string = base64_string.split(",")[1]
|
|
imgdata = base64.b64decode(base64_string)
|
|
# convert base64 to PIL image
|
|
return Image.open(io.BytesIO(imgdata))
|
|
|
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
|
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
|
|
|
if sampler_index is None:
|
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
|
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
|
"sd_model": shared.sd_model,
|
|
"sampler_index": sampler_index[0],
|
|
"do_not_save_samples": True,
|
|
"do_not_save_grid": True
|
|
}
|
|
)
|
|
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
|
# Override object param
|
|
with self.queue_lock:
|
|
processed = process_images(p)
|
|
|
|
b64images = []
|
|
for i in processed.images:
|
|
buffer = io.BytesIO()
|
|
i.save(buffer, format="png")
|
|
b64images.append(base64.b64encode(buffer.getvalue()))
|
|
|
|
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.js())
|
|
|
|
|
|
|
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
|
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
|
|
|
if sampler_index is None:
|
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
|
|
|
|
init_images = img2imgreq.init_images
|
|
if init_images is None:
|
|
raise HTTPException(status_code=404, detail="Init image not found")
|
|
|
|
mask = img2imgreq.mask
|
|
if mask:
|
|
mask = self.__base64_to_image(mask)
|
|
|
|
|
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
|
"sd_model": shared.sd_model,
|
|
"sampler_index": sampler_index[0],
|
|
"do_not_save_samples": True,
|
|
"do_not_save_grid": True,
|
|
"mask": mask
|
|
}
|
|
)
|
|
p = StableDiffusionProcessingImg2Img(**vars(populate))
|
|
|
|
imgs = []
|
|
for img in init_images:
|
|
img = self.__base64_to_image(img)
|
|
imgs = [img] * p.batch_size
|
|
|
|
p.init_images = imgs
|
|
# Override object param
|
|
with self.queue_lock:
|
|
processed = process_images(p)
|
|
|
|
b64images = []
|
|
for i in processed.images:
|
|
buffer = io.BytesIO()
|
|
i.save(buffer, format="png")
|
|
b64images.append(base64.b64encode(buffer.getvalue()))
|
|
|
|
if (not img2imgreq.include_init_images):
|
|
img2imgreq.init_images = None
|
|
img2imgreq.mask = None
|
|
|
|
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=processed.js())
|
|
|
|
def interrogateapi(self, interrogatereq: InterrogateAPI):
|
|
image_b64 = interrogatereq.image
|
|
if image_b64 is None:
|
|
raise HTTPException(status_code=404, detail="Image not found")
|
|
|
|
populate = interrogatereq.copy(update={ # Override __init__ params
|
|
}
|
|
)
|
|
|
|
img = self.__base64_to_image(image_b64)
|
|
|
|
# Override object param
|
|
with self.queue_lock:
|
|
processed = shared.interrogator.interrogate(img)
|
|
|
|
return InterrogateResponse(caption=processed, parameters=json.dumps(vars(interrogatereq)), info=None)
|
|
|
|
def extrasapi(self):
|
|
raise NotImplementedError
|
|
|
|
def pnginfoapi(self):
|
|
raise NotImplementedError
|
|
|
|
def launch(self, server_name, port):
|
|
self.app.include_router(self.router)
|
|
uvicorn.run(self.app, host=server_name, port=port)
|