mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 14:55:09 +08:00
ff0e17174f
rework quoting for infotext items that have commas in them to use json (should be backwards compatible except for cases where it didn't work previously) add some locals from processing function into the Processing class as fields
1274 lines
58 KiB
Python
1274 lines
58 KiB
Python
import json
|
|
import math
|
|
import os
|
|
import sys
|
|
import hashlib
|
|
|
|
import torch
|
|
import numpy as np
|
|
from PIL import Image, ImageFilter, ImageOps
|
|
import random
|
|
import cv2
|
|
from skimage import exposure
|
|
from typing import Any, Dict, List
|
|
|
|
import modules.sd_hijack
|
|
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common
|
|
from modules.sd_hijack import model_hijack
|
|
from modules.shared import opts, cmd_opts, state
|
|
import modules.shared as shared
|
|
import modules.paths as paths
|
|
import modules.face_restoration
|
|
import modules.images as images
|
|
import modules.styles
|
|
import modules.sd_models as sd_models
|
|
import modules.sd_vae as sd_vae
|
|
import logging
|
|
from ldm.data.util import AddMiDaS
|
|
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
|
|
|
from einops import repeat, rearrange
|
|
from blendmodes.blend import blendLayers, BlendType
|
|
|
|
|
|
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
|
opt_C = 4
|
|
opt_f = 8
|
|
|
|
|
|
def setup_color_correction(image):
|
|
logging.info("Calibrating color correction.")
|
|
correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
|
|
return correction_target
|
|
|
|
|
|
def apply_color_correction(correction, original_image):
|
|
logging.info("Applying color correction.")
|
|
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
|
cv2.cvtColor(
|
|
np.asarray(original_image),
|
|
cv2.COLOR_RGB2LAB
|
|
),
|
|
correction,
|
|
channel_axis=2
|
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
|
|
|
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
|
|
|
|
return image
|
|
|
|
|
|
def apply_overlay(image, paste_loc, index, overlays):
|
|
if overlays is None or index >= len(overlays):
|
|
return image
|
|
|
|
overlay = overlays[index]
|
|
|
|
if paste_loc is not None:
|
|
x, y, w, h = paste_loc
|
|
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
|
image = images.resize_image(1, image, w, h)
|
|
base_image.paste(image, (x, y))
|
|
image = base_image
|
|
|
|
image = image.convert('RGBA')
|
|
image.alpha_composite(overlay)
|
|
image = image.convert('RGB')
|
|
|
|
return image
|
|
|
|
|
|
def txt2img_image_conditioning(sd_model, x, width, height):
|
|
if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
|
|
|
|
# The "masked-image" in this case will just be all zeros since the entire image is masked.
|
|
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
|
|
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
|
|
|
|
# Add the fake full 1s mask to the first dimension.
|
|
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
|
image_conditioning = image_conditioning.to(x.dtype)
|
|
|
|
return image_conditioning
|
|
|
|
elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
|
|
|
|
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
|
|
|
|
else:
|
|
# Dummy zero conditioning if we're not using inpainting or unclip models.
|
|
# Still takes up a bit of memory, but no encoder call.
|
|
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
|
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
|
|
|
|
|
|
class StableDiffusionProcessing:
|
|
"""
|
|
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
|
"""
|
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
|
if sampler_index is not None:
|
|
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
|
|
|
self.outpath_samples: str = outpath_samples
|
|
self.outpath_grids: str = outpath_grids
|
|
self.prompt: str = prompt
|
|
self.prompt_for_display: str = None
|
|
self.negative_prompt: str = (negative_prompt or "")
|
|
self.styles: list = styles or []
|
|
self.seed: int = seed
|
|
self.subseed: int = subseed
|
|
self.subseed_strength: float = subseed_strength
|
|
self.seed_resize_from_h: int = seed_resize_from_h
|
|
self.seed_resize_from_w: int = seed_resize_from_w
|
|
self.sampler_name: str = sampler_name
|
|
self.batch_size: int = batch_size
|
|
self.n_iter: int = n_iter
|
|
self.steps: int = steps
|
|
self.cfg_scale: float = cfg_scale
|
|
self.width: int = width
|
|
self.height: int = height
|
|
self.restore_faces: bool = restore_faces
|
|
self.tiling: bool = tiling
|
|
self.do_not_save_samples: bool = do_not_save_samples
|
|
self.do_not_save_grid: bool = do_not_save_grid
|
|
self.extra_generation_params: dict = extra_generation_params or {}
|
|
self.overlay_images = overlay_images
|
|
self.eta = eta
|
|
self.do_not_reload_embeddings = do_not_reload_embeddings
|
|
self.paste_to = None
|
|
self.color_corrections = None
|
|
self.denoising_strength: float = denoising_strength
|
|
self.sampler_noise_scheduler_override = None
|
|
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
|
|
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
|
|
self.s_churn = s_churn or opts.s_churn
|
|
self.s_tmin = s_tmin or opts.s_tmin
|
|
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
|
self.s_noise = s_noise or opts.s_noise
|
|
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
|
self.override_settings_restore_afterwards = override_settings_restore_afterwards
|
|
self.is_using_inpainting_conditioning = False
|
|
self.disable_extra_networks = False
|
|
self.token_merging_ratio = 0
|
|
self.token_merging_ratio_hr = 0
|
|
|
|
if not seed_enable_extras:
|
|
self.subseed = -1
|
|
self.subseed_strength = 0
|
|
self.seed_resize_from_h = 0
|
|
self.seed_resize_from_w = 0
|
|
|
|
self.scripts = None
|
|
self.script_args = script_args
|
|
self.all_prompts = None
|
|
self.all_negative_prompts = None
|
|
self.all_seeds = None
|
|
self.all_subseeds = None
|
|
self.iteration = 0
|
|
self.is_hr_pass = False
|
|
self.sampler = None
|
|
|
|
self.prompts = None
|
|
self.negative_prompts = None
|
|
self.seeds = None
|
|
self.subseeds = None
|
|
|
|
self.step_multiplier = 1
|
|
self.cached_uc = [None, None]
|
|
self.cached_c = [None, None]
|
|
self.uc = None
|
|
self.c = None
|
|
|
|
@property
|
|
def sd_model(self):
|
|
return shared.sd_model
|
|
|
|
def txt2img_image_conditioning(self, x, width=None, height=None):
|
|
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
|
|
|
|
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
|
|
|
|
def depth2img_image_conditioning(self, source_image):
|
|
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
|
|
transformer = AddMiDaS(model_type="dpt_hybrid")
|
|
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
|
|
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
|
|
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
|
|
|
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
|
|
conditioning = torch.nn.functional.interpolate(
|
|
self.sd_model.depth_model(midas_in),
|
|
size=conditioning_image.shape[2:],
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
|
|
(depth_min, depth_max) = torch.aminmax(conditioning)
|
|
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
|
|
return conditioning
|
|
|
|
def edit_image_conditioning(self, source_image):
|
|
conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
|
|
|
|
return conditioning_image
|
|
|
|
def unclip_image_conditioning(self, source_image):
|
|
c_adm = self.sd_model.embedder(source_image)
|
|
if self.sd_model.noise_augmentor is not None:
|
|
noise_level = 0 # TODO: Allow other noise levels?
|
|
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
|
|
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
|
return c_adm
|
|
|
|
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
|
|
self.is_using_inpainting_conditioning = True
|
|
|
|
# Handle the different mask inputs
|
|
if image_mask is not None:
|
|
if torch.is_tensor(image_mask):
|
|
conditioning_mask = image_mask
|
|
else:
|
|
conditioning_mask = np.array(image_mask.convert("L"))
|
|
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
|
|
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
|
|
|
|
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
|
|
conditioning_mask = torch.round(conditioning_mask)
|
|
else:
|
|
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
|
|
|
|
# Create another latent image, this time with a masked version of the original input.
|
|
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
|
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
|
|
conditioning_image = torch.lerp(
|
|
source_image,
|
|
source_image * (1.0 - conditioning_mask),
|
|
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
|
|
)
|
|
|
|
# Encode the new masked image using first stage of network.
|
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
|
|
|
# Create the concatenated conditioning tensor to be fed to `c_concat`
|
|
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
|
|
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
|
|
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
|
|
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
|
|
|
|
return image_conditioning
|
|
|
|
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
|
|
source_image = devices.cond_cast_float(source_image)
|
|
|
|
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
|
# identify itself with a field common to all models. The conditioning_key is also hybrid.
|
|
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
|
|
return self.depth2img_image_conditioning(source_image)
|
|
|
|
if self.sd_model.cond_stage_key == "edit":
|
|
return self.edit_image_conditioning(source_image)
|
|
|
|
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
|
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
|
|
|
if self.sampler.conditioning_key == "crossattn-adm":
|
|
return self.unclip_image_conditioning(source_image)
|
|
|
|
# Dummy zero conditioning if we're not using inpainting or depth model.
|
|
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
|
|
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
|
pass
|
|
|
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
|
raise NotImplementedError()
|
|
|
|
def close(self):
|
|
self.sampler = None
|
|
self.c = None
|
|
self.uc = None
|
|
self.cached_c = [None, None]
|
|
self.cached_uc = [None, None]
|
|
|
|
def get_token_merging_ratio(self, for_hr=False):
|
|
if for_hr:
|
|
return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
|
|
|
|
return self.token_merging_ratio or opts.token_merging_ratio
|
|
|
|
def setup_prompts(self):
|
|
if type(self.prompt) == list:
|
|
self.all_prompts = self.prompt
|
|
else:
|
|
self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
|
|
|
|
if type(self.negative_prompt) == list:
|
|
self.all_negative_prompts = self.negative_prompt
|
|
else:
|
|
self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
|
|
|
|
self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
|
|
self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
|
|
|
|
def get_conds_with_caching(self, function, required_prompts, steps, cache):
|
|
"""
|
|
Returns the result of calling function(shared.sd_model, required_prompts, steps)
|
|
using a cache to store the result if the same arguments have been used before.
|
|
|
|
cache is an array containing two elements. The first element is a tuple
|
|
representing the previously used arguments, or None if no arguments
|
|
have been used before. The second element is where the previously
|
|
computed result is stored.
|
|
"""
|
|
|
|
if cache[0] is not None and (required_prompts, steps) == cache[0]:
|
|
return cache[1]
|
|
|
|
with devices.autocast():
|
|
cache[1] = function(shared.sd_model, required_prompts, steps)
|
|
|
|
cache[0] = (required_prompts, steps)
|
|
return cache[1]
|
|
|
|
def setup_conds(self):
|
|
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
|
|
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
|
|
|
|
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
|
|
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, self.cached_c)
|
|
|
|
def parse_extra_network_prompts(self):
|
|
self.prompts, extra_network_data = extra_networks.parse_prompts(self.prompts)
|
|
|
|
return extra_network_data
|
|
|
|
|
|
class Processed:
|
|
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
|
|
self.images = images_list
|
|
self.prompt = p.prompt
|
|
self.negative_prompt = p.negative_prompt
|
|
self.seed = seed
|
|
self.subseed = subseed
|
|
self.subseed_strength = p.subseed_strength
|
|
self.info = info
|
|
self.comments = comments
|
|
self.width = p.width
|
|
self.height = p.height
|
|
self.sampler_name = p.sampler_name
|
|
self.cfg_scale = p.cfg_scale
|
|
self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
|
|
self.steps = p.steps
|
|
self.batch_size = p.batch_size
|
|
self.restore_faces = p.restore_faces
|
|
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
|
|
self.sd_model_hash = shared.sd_model.sd_model_hash
|
|
self.seed_resize_from_w = p.seed_resize_from_w
|
|
self.seed_resize_from_h = p.seed_resize_from_h
|
|
self.denoising_strength = getattr(p, 'denoising_strength', None)
|
|
self.extra_generation_params = p.extra_generation_params
|
|
self.index_of_first_image = index_of_first_image
|
|
self.styles = p.styles
|
|
self.job_timestamp = state.job_timestamp
|
|
self.clip_skip = opts.CLIP_stop_at_last_layers
|
|
self.token_merging_ratio = p.token_merging_ratio
|
|
self.token_merging_ratio_hr = p.token_merging_ratio_hr
|
|
|
|
self.eta = p.eta
|
|
self.ddim_discretize = p.ddim_discretize
|
|
self.s_churn = p.s_churn
|
|
self.s_tmin = p.s_tmin
|
|
self.s_tmax = p.s_tmax
|
|
self.s_noise = p.s_noise
|
|
self.s_min_uncond = p.s_min_uncond
|
|
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
|
|
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
|
|
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
|
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
|
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
|
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
|
|
|
|
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
|
|
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
|
|
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
|
|
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
|
|
self.infotexts = infotexts or [info]
|
|
|
|
def js(self):
|
|
obj = {
|
|
"prompt": self.all_prompts[0],
|
|
"all_prompts": self.all_prompts,
|
|
"negative_prompt": self.all_negative_prompts[0],
|
|
"all_negative_prompts": self.all_negative_prompts,
|
|
"seed": self.seed,
|
|
"all_seeds": self.all_seeds,
|
|
"subseed": self.subseed,
|
|
"all_subseeds": self.all_subseeds,
|
|
"subseed_strength": self.subseed_strength,
|
|
"width": self.width,
|
|
"height": self.height,
|
|
"sampler_name": self.sampler_name,
|
|
"cfg_scale": self.cfg_scale,
|
|
"steps": self.steps,
|
|
"batch_size": self.batch_size,
|
|
"restore_faces": self.restore_faces,
|
|
"face_restoration_model": self.face_restoration_model,
|
|
"sd_model_hash": self.sd_model_hash,
|
|
"seed_resize_from_w": self.seed_resize_from_w,
|
|
"seed_resize_from_h": self.seed_resize_from_h,
|
|
"denoising_strength": self.denoising_strength,
|
|
"extra_generation_params": self.extra_generation_params,
|
|
"index_of_first_image": self.index_of_first_image,
|
|
"infotexts": self.infotexts,
|
|
"styles": self.styles,
|
|
"job_timestamp": self.job_timestamp,
|
|
"clip_skip": self.clip_skip,
|
|
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
|
|
}
|
|
|
|
return json.dumps(obj)
|
|
|
|
def infotext(self, p: StableDiffusionProcessing, index):
|
|
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
|
|
|
def get_token_merging_ratio(self, for_hr=False):
|
|
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
|
|
|
|
|
|
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
|
|
def slerp(val, low, high):
|
|
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
|
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
|
dot = (low_norm*high_norm).sum(1)
|
|
|
|
if dot.mean() > 0.9995:
|
|
return low * val + high * (1 - val)
|
|
|
|
omega = torch.acos(dot)
|
|
so = torch.sin(omega)
|
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
|
return res
|
|
|
|
|
|
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
|
eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
|
|
xs = []
|
|
|
|
# if we have multiple seeds, this means we are working with batch size>1; this then
|
|
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
|
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
|
# produce the same images as with two batches [100], [101].
|
|
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
|
|
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
|
else:
|
|
sampler_noises = None
|
|
|
|
for i, seed in enumerate(seeds):
|
|
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
|
|
|
subnoise = None
|
|
if subseeds is not None:
|
|
subseed = 0 if i >= len(subseeds) else subseeds[i]
|
|
|
|
subnoise = devices.randn(subseed, noise_shape)
|
|
|
|
# randn results depend on device; gpu and cpu get different results for same seed;
|
|
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
|
|
# but the original script had it like this, so I do not dare change it for now because
|
|
# it will break everyone's seeds.
|
|
noise = devices.randn(seed, noise_shape)
|
|
|
|
if subnoise is not None:
|
|
noise = slerp(subseed_strength, noise, subnoise)
|
|
|
|
if noise_shape != shape:
|
|
x = devices.randn(seed, shape)
|
|
dx = (shape[2] - noise_shape[2]) // 2
|
|
dy = (shape[1] - noise_shape[1]) // 2
|
|
w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
|
|
h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
|
|
tx = 0 if dx < 0 else dx
|
|
ty = 0 if dy < 0 else dy
|
|
dx = max(-dx, 0)
|
|
dy = max(-dy, 0)
|
|
|
|
x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
|
|
noise = x
|
|
|
|
if sampler_noises is not None:
|
|
cnt = p.sampler.number_of_needed_noises(p)
|
|
|
|
if eta_noise_seed_delta > 0:
|
|
torch.manual_seed(seed + eta_noise_seed_delta)
|
|
|
|
for j in range(cnt):
|
|
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
|
|
|
xs.append(noise)
|
|
|
|
if sampler_noises is not None:
|
|
p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
|
|
|
|
x = torch.stack(xs).to(shared.device)
|
|
return x
|
|
|
|
|
|
def decode_first_stage(model, x):
|
|
with devices.autocast(disable=x.dtype == devices.dtype_vae):
|
|
x = model.decode_first_stage(x)
|
|
|
|
return x
|
|
|
|
|
|
def get_fixed_seed(seed):
|
|
if seed is None or seed == '' or seed == -1:
|
|
return int(random.randrange(4294967294))
|
|
|
|
return seed
|
|
|
|
|
|
def fix_seed(p):
|
|
p.seed = get_fixed_seed(p.seed)
|
|
p.subseed = get_fixed_seed(p.subseed)
|
|
|
|
|
|
def program_version():
|
|
import launch
|
|
|
|
res = launch.git_tag()
|
|
if res == "<none>":
|
|
res = None
|
|
|
|
return res
|
|
|
|
|
|
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
|
|
index = position_in_batch + iteration * p.batch_size
|
|
|
|
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
|
enable_hr = getattr(p, 'enable_hr', False)
|
|
token_merging_ratio = p.get_token_merging_ratio()
|
|
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
|
|
|
|
uses_ensd = opts.eta_noise_seed_delta != 0
|
|
if uses_ensd:
|
|
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
|
|
|
|
generation_params = {
|
|
"Steps": p.steps,
|
|
"Sampler": p.sampler_name,
|
|
"CFG scale": p.cfg_scale,
|
|
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
|
|
"Seed": all_seeds[index],
|
|
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
|
"Size": f"{p.width}x{p.height}",
|
|
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
|
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
|
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
|
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
|
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
|
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
|
|
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
|
|
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
|
|
"Init image hash": getattr(p, 'init_img_hash', None),
|
|
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
|
|
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
|
|
**p.extra_generation_params,
|
|
"Version": program_version() if opts.add_version_to_infotext else None,
|
|
}
|
|
|
|
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
|
|
|
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
|
|
|
|
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
|
|
|
|
|
def process_images(p: StableDiffusionProcessing) -> Processed:
|
|
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
|
|
|
|
try:
|
|
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
|
|
if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
|
|
p.override_settings.pop('sd_model_checkpoint', None)
|
|
sd_models.reload_model_weights()
|
|
|
|
for k, v in p.override_settings.items():
|
|
setattr(opts, k, v)
|
|
|
|
if k == 'sd_model_checkpoint':
|
|
sd_models.reload_model_weights()
|
|
|
|
if k == 'sd_vae':
|
|
sd_vae.reload_vae_weights()
|
|
|
|
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
|
|
|
|
res = process_images_inner(p)
|
|
|
|
finally:
|
|
sd_models.apply_token_merging(p.sd_model, 0)
|
|
|
|
# restore opts to original state
|
|
if p.override_settings_restore_afterwards:
|
|
for k, v in stored_opts.items():
|
|
setattr(opts, k, v)
|
|
|
|
if k == 'sd_vae':
|
|
sd_vae.reload_vae_weights()
|
|
|
|
return res
|
|
|
|
|
|
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
|
|
|
if type(p.prompt) == list:
|
|
assert(len(p.prompt) > 0)
|
|
else:
|
|
assert p.prompt is not None
|
|
|
|
devices.torch_gc()
|
|
|
|
seed = get_fixed_seed(p.seed)
|
|
subseed = get_fixed_seed(p.subseed)
|
|
|
|
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
|
|
modules.sd_hijack.model_hijack.clear_comments()
|
|
|
|
comments = {}
|
|
|
|
p.setup_prompts()
|
|
|
|
if type(seed) == list:
|
|
p.all_seeds = seed
|
|
else:
|
|
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
|
|
|
|
if type(subseed) == list:
|
|
p.all_subseeds = subseed
|
|
else:
|
|
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
|
|
|
def infotext(iteration=0, position_in_batch=0):
|
|
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
|
|
|
|
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
|
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
|
|
|
if p.scripts is not None:
|
|
p.scripts.process(p)
|
|
|
|
infotexts = []
|
|
output_images = []
|
|
|
|
with torch.no_grad(), p.sd_model.ema_scope():
|
|
with devices.autocast():
|
|
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
|
|
|
|
# for OSX, loading the model during sampling changes the generated picture, so it is loaded here
|
|
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
|
|
sd_vae_approx.model()
|
|
|
|
if state.job_count == -1:
|
|
state.job_count = p.n_iter
|
|
|
|
extra_network_data = None
|
|
for n in range(p.n_iter):
|
|
p.iteration = n
|
|
|
|
if state.skipped:
|
|
state.skipped = False
|
|
|
|
if state.interrupted:
|
|
break
|
|
|
|
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
|
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
|
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
|
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
|
|
|
if p.scripts is not None:
|
|
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
|
|
|
|
if len(p.prompts) == 0:
|
|
break
|
|
|
|
extra_network_data = p.parse_extra_network_prompts()
|
|
|
|
if not p.disable_extra_networks:
|
|
with devices.autocast():
|
|
extra_networks.activate(p, extra_network_data)
|
|
|
|
if p.scripts is not None:
|
|
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
|
|
|
|
# params.txt should be saved after scripts.process_batch, since the
|
|
# infotext could be modified by that callback
|
|
# Example: a wildcard processed by process_batch sets an extra model
|
|
# strength, which is saved as "Model Strength: 1.0" in the infotext
|
|
if n == 0:
|
|
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
|
|
processed = Processed(p, [], p.seed, "")
|
|
file.write(processed.infotext(p, 0))
|
|
|
|
p.setup_conds()
|
|
|
|
if len(model_hijack.comments) > 0:
|
|
for comment in model_hijack.comments:
|
|
comments[comment] = 1
|
|
|
|
if p.n_iter > 1:
|
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
|
|
|
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
|
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
|
|
|
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
|
for x in x_samples_ddim:
|
|
devices.test_for_nans(x, "vae")
|
|
|
|
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
del samples_ddim
|
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
|
lowvram.send_everything_to_cpu()
|
|
|
|
devices.torch_gc()
|
|
|
|
if p.scripts is not None:
|
|
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
|
|
|
for i, x_sample in enumerate(x_samples_ddim):
|
|
p.batch_index = i
|
|
|
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
|
x_sample = x_sample.astype(np.uint8)
|
|
|
|
if p.restore_faces:
|
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
|
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
|
|
|
|
devices.torch_gc()
|
|
|
|
x_sample = modules.face_restoration.restore_faces(x_sample)
|
|
devices.torch_gc()
|
|
|
|
image = Image.fromarray(x_sample)
|
|
|
|
if p.scripts is not None:
|
|
pp = scripts.PostprocessImageArgs(image)
|
|
p.scripts.postprocess_image(p, pp)
|
|
image = pp.image
|
|
|
|
if p.color_corrections is not None and i < len(p.color_corrections):
|
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
|
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
|
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
|
image = apply_color_correction(p.color_corrections[i], image)
|
|
|
|
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
|
|
|
if opts.samples_save and not p.do_not_save_samples:
|
|
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
|
|
|
text = infotext(n, i)
|
|
infotexts.append(text)
|
|
if opts.enable_pnginfo:
|
|
image.info["parameters"] = text
|
|
output_images.append(image)
|
|
|
|
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
|
|
image_mask = p.mask_for_overlay.convert('RGB')
|
|
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
|
|
|
if opts.save_mask:
|
|
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
|
|
|
|
if opts.save_mask_composite:
|
|
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
|
|
|
|
if opts.return_mask:
|
|
output_images.append(image_mask)
|
|
|
|
if opts.return_mask_composite:
|
|
output_images.append(image_mask_composite)
|
|
|
|
del x_samples_ddim
|
|
|
|
devices.torch_gc()
|
|
|
|
state.nextjob()
|
|
|
|
p.color_corrections = None
|
|
|
|
index_of_first_image = 0
|
|
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
|
|
if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
|
|
grid = images.image_grid(output_images, p.batch_size)
|
|
|
|
if opts.return_grid:
|
|
text = infotext()
|
|
infotexts.insert(0, text)
|
|
if opts.enable_pnginfo:
|
|
grid.info["parameters"] = text
|
|
output_images.insert(0, grid)
|
|
index_of_first_image = 1
|
|
|
|
if opts.grid_save:
|
|
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
|
|
|
if not p.disable_extra_networks and extra_network_data:
|
|
extra_networks.deactivate(p, extra_network_data)
|
|
|
|
devices.torch_gc()
|
|
|
|
res = Processed(
|
|
p,
|
|
images_list=output_images,
|
|
seed=p.all_seeds[0],
|
|
info=infotext(),
|
|
comments="".join(f"{comment}\n" for comment in comments),
|
|
subseed=p.all_subseeds[0],
|
|
index_of_first_image=index_of_first_image,
|
|
infotexts=infotexts,
|
|
)
|
|
|
|
if p.scripts is not None:
|
|
p.scripts.postprocess(p, res)
|
|
|
|
return res
|
|
|
|
|
|
def old_hires_fix_first_pass_dimensions(width, height):
|
|
"""old algorithm for auto-calculating first pass size"""
|
|
|
|
desired_pixel_count = 512 * 512
|
|
actual_pixel_count = width * height
|
|
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
|
width = math.ceil(scale * width / 64) * 64
|
|
height = math.ceil(scale * height / 64) * 64
|
|
|
|
return width, height
|
|
|
|
|
|
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
sampler = None
|
|
|
|
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.enable_hr = enable_hr
|
|
self.denoising_strength = denoising_strength
|
|
self.hr_scale = hr_scale
|
|
self.hr_upscaler = hr_upscaler
|
|
self.hr_second_pass_steps = hr_second_pass_steps
|
|
self.hr_resize_x = hr_resize_x
|
|
self.hr_resize_y = hr_resize_y
|
|
self.hr_upscale_to_x = hr_resize_x
|
|
self.hr_upscale_to_y = hr_resize_y
|
|
self.hr_sampler_name = hr_sampler_name
|
|
self.hr_prompt = hr_prompt
|
|
self.hr_negative_prompt = hr_negative_prompt
|
|
self.all_hr_prompts = None
|
|
self.all_hr_negative_prompts = None
|
|
|
|
if firstphase_width != 0 or firstphase_height != 0:
|
|
self.hr_upscale_to_x = self.width
|
|
self.hr_upscale_to_y = self.height
|
|
self.width = firstphase_width
|
|
self.height = firstphase_height
|
|
|
|
self.truncate_x = 0
|
|
self.truncate_y = 0
|
|
self.applied_old_hires_behavior_to = None
|
|
|
|
self.hr_prompts = None
|
|
self.hr_negative_prompts = None
|
|
self.hr_extra_network_data = None
|
|
|
|
self.hr_c = None
|
|
self.hr_uc = None
|
|
|
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
|
if self.enable_hr:
|
|
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
|
|
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
|
|
|
|
if tuple(self.hr_prompt) != tuple(self.prompt):
|
|
self.extra_generation_params["Hires prompt"] = self.hr_prompt
|
|
|
|
if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
|
|
self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
|
|
|
|
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
|
|
self.hr_resize_x = self.width
|
|
self.hr_resize_y = self.height
|
|
self.hr_upscale_to_x = self.width
|
|
self.hr_upscale_to_y = self.height
|
|
|
|
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
|
|
self.applied_old_hires_behavior_to = (self.width, self.height)
|
|
|
|
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
|
|
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
|
self.hr_upscale_to_x = int(self.width * self.hr_scale)
|
|
self.hr_upscale_to_y = int(self.height * self.hr_scale)
|
|
else:
|
|
self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
|
|
|
|
if self.hr_resize_y == 0:
|
|
self.hr_upscale_to_x = self.hr_resize_x
|
|
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
|
|
elif self.hr_resize_x == 0:
|
|
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
|
|
self.hr_upscale_to_y = self.hr_resize_y
|
|
else:
|
|
target_w = self.hr_resize_x
|
|
target_h = self.hr_resize_y
|
|
src_ratio = self.width / self.height
|
|
dst_ratio = self.hr_resize_x / self.hr_resize_y
|
|
|
|
if src_ratio < dst_ratio:
|
|
self.hr_upscale_to_x = self.hr_resize_x
|
|
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
|
|
else:
|
|
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
|
|
self.hr_upscale_to_y = self.hr_resize_y
|
|
|
|
self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
|
|
self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
|
|
|
|
# special case: the user has chosen to do nothing
|
|
if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
|
|
self.enable_hr = False
|
|
self.denoising_strength = None
|
|
self.extra_generation_params.pop("Hires upscale", None)
|
|
self.extra_generation_params.pop("Hires resize", None)
|
|
return
|
|
|
|
if not state.processing_has_refined_job_count:
|
|
if state.job_count == -1:
|
|
state.job_count = self.n_iter
|
|
|
|
shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
|
|
state.job_count = state.job_count * 2
|
|
state.processing_has_refined_job_count = True
|
|
|
|
if self.hr_second_pass_steps:
|
|
self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
|
|
|
|
if self.hr_upscaler is not None:
|
|
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
|
|
|
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
|
|
|
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
|
if self.enable_hr and latent_scale_mode is None:
|
|
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
|
|
|
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
|
|
|
|
if not self.enable_hr:
|
|
return samples
|
|
|
|
self.is_hr_pass = True
|
|
|
|
target_width = self.hr_upscale_to_x
|
|
target_height = self.hr_upscale_to_y
|
|
|
|
def save_intermediate(image, index):
|
|
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
|
|
|
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
|
return
|
|
|
|
if not isinstance(image, Image.Image):
|
|
image = sd_samplers.sample_to_image(image, index, approximation=0)
|
|
|
|
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
|
|
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
|
|
|
|
if latent_scale_mode is not None:
|
|
for i in range(samples.shape[0]):
|
|
save_intermediate(samples, i)
|
|
|
|
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
|
|
|
|
# Avoid making the inpainting conditioning unless necessary as
|
|
# this does need some extra compute to decode / encode the image again.
|
|
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
|
|
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
|
|
else:
|
|
image_conditioning = self.txt2img_image_conditioning(samples)
|
|
else:
|
|
decoded_samples = decode_first_stage(self.sd_model, samples)
|
|
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
batch_images = []
|
|
for i, x_sample in enumerate(lowres_samples):
|
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
|
x_sample = x_sample.astype(np.uint8)
|
|
image = Image.fromarray(x_sample)
|
|
|
|
save_intermediate(image, i)
|
|
|
|
image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = np.moveaxis(image, 2, 0)
|
|
batch_images.append(image)
|
|
|
|
decoded_samples = torch.from_numpy(np.array(batch_images))
|
|
decoded_samples = decoded_samples.to(shared.device)
|
|
decoded_samples = 2. * decoded_samples - 1.
|
|
|
|
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
|
|
|
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
|
|
|
shared.state.nextjob()
|
|
|
|
img2img_sampler_name = self.hr_sampler_name or self.sampler_name
|
|
|
|
if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
|
|
img2img_sampler_name = 'DDIM'
|
|
|
|
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
|
|
|
|
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
|
|
|
|
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
|
|
|
|
# GC now before running the next img2img to prevent running out of memory
|
|
x = None
|
|
devices.torch_gc()
|
|
|
|
if not self.disable_extra_networks:
|
|
with devices.autocast():
|
|
extra_networks.activate(self, self.hr_extra_network_data)
|
|
|
|
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
|
|
|
|
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
|
|
|
|
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
|
|
|
|
self.is_hr_pass = False
|
|
|
|
return samples
|
|
|
|
def close(self):
|
|
self.hr_c = None
|
|
self.hr_uc = None
|
|
|
|
def setup_prompts(self):
|
|
super().setup_prompts()
|
|
|
|
if not self.enable_hr:
|
|
return
|
|
|
|
if self.hr_prompt == '':
|
|
self.hr_prompt = self.prompt
|
|
|
|
if self.hr_negative_prompt == '':
|
|
self.hr_negative_prompt = self.negative_prompt
|
|
|
|
if type(self.hr_prompt) == list:
|
|
self.all_hr_prompts = self.hr_prompt
|
|
else:
|
|
self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
|
|
|
|
if type(self.hr_negative_prompt) == list:
|
|
self.all_hr_negative_prompts = self.hr_negative_prompt
|
|
else:
|
|
self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
|
|
|
|
self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
|
|
self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
|
|
|
|
def setup_conds(self):
|
|
super().setup_conds()
|
|
|
|
if self.enable_hr:
|
|
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
|
|
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, self.cached_c)
|
|
|
|
def parse_extra_network_prompts(self):
|
|
res = super().parse_extra_network_prompts()
|
|
|
|
if self.enable_hr:
|
|
self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
|
|
self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
|
|
|
|
self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
|
|
|
|
return res
|
|
|
|
|
|
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
sampler = None
|
|
|
|
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.init_images = init_images
|
|
self.resize_mode: int = resize_mode
|
|
self.denoising_strength: float = denoising_strength
|
|
self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
|
|
self.init_latent = None
|
|
self.image_mask = mask
|
|
self.latent_mask = None
|
|
self.mask_for_overlay = None
|
|
self.mask_blur = mask_blur
|
|
self.inpainting_fill = inpainting_fill
|
|
self.inpaint_full_res = inpaint_full_res
|
|
self.inpaint_full_res_padding = inpaint_full_res_padding
|
|
self.inpainting_mask_invert = inpainting_mask_invert
|
|
self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
|
|
self.mask = None
|
|
self.nmask = None
|
|
self.image_conditioning = None
|
|
|
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
|
crop_region = None
|
|
|
|
image_mask = self.image_mask
|
|
|
|
if image_mask is not None:
|
|
image_mask = image_mask.convert('L')
|
|
|
|
if self.inpainting_mask_invert:
|
|
image_mask = ImageOps.invert(image_mask)
|
|
|
|
if self.mask_blur > 0:
|
|
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
|
|
|
if self.inpaint_full_res:
|
|
self.mask_for_overlay = image_mask
|
|
mask = image_mask.convert('L')
|
|
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
|
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
|
x1, y1, x2, y2 = crop_region
|
|
|
|
mask = mask.crop(crop_region)
|
|
image_mask = images.resize_image(2, mask, self.width, self.height)
|
|
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
|
else:
|
|
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
|
np_mask = np.array(image_mask)
|
|
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
|
self.mask_for_overlay = Image.fromarray(np_mask)
|
|
|
|
self.overlay_images = []
|
|
|
|
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
|
|
|
|
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
|
if add_color_corrections:
|
|
self.color_corrections = []
|
|
imgs = []
|
|
for img in self.init_images:
|
|
|
|
# Save init image
|
|
if opts.save_init_img:
|
|
self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
|
|
images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
|
|
|
|
image = images.flatten(img, opts.img2img_background_color)
|
|
|
|
if crop_region is None and self.resize_mode != 3:
|
|
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
|
|
|
if image_mask is not None:
|
|
image_masked = Image.new('RGBa', (image.width, image.height))
|
|
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
|
|
|
self.overlay_images.append(image_masked.convert('RGBA'))
|
|
|
|
# crop_region is not None if we are doing inpaint full res
|
|
if crop_region is not None:
|
|
image = image.crop(crop_region)
|
|
image = images.resize_image(2, image, self.width, self.height)
|
|
|
|
if image_mask is not None:
|
|
if self.inpainting_fill != 1:
|
|
image = masking.fill(image, latent_mask)
|
|
|
|
if add_color_corrections:
|
|
self.color_corrections.append(setup_color_correction(image))
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = np.moveaxis(image, 2, 0)
|
|
|
|
imgs.append(image)
|
|
|
|
if len(imgs) == 1:
|
|
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
|
if self.overlay_images is not None:
|
|
self.overlay_images = self.overlay_images * self.batch_size
|
|
|
|
if self.color_corrections is not None and len(self.color_corrections) == 1:
|
|
self.color_corrections = self.color_corrections * self.batch_size
|
|
|
|
elif len(imgs) <= self.batch_size:
|
|
self.batch_size = len(imgs)
|
|
batch_images = np.array(imgs)
|
|
else:
|
|
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
|
|
|
|
image = torch.from_numpy(batch_images)
|
|
image = 2. * image - 1.
|
|
image = image.to(shared.device)
|
|
|
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
|
|
|
if self.resize_mode == 3:
|
|
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
|
|
|
if image_mask is not None:
|
|
init_mask = latent_mask
|
|
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
|
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
|
latmask = latmask[0]
|
|
latmask = np.around(latmask)
|
|
latmask = np.tile(latmask[None], (4, 1, 1))
|
|
|
|
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
|
|
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
|
|
|
|
# this needs to be fixed to be done in sample() using actual seeds for batches
|
|
if self.inpainting_fill == 2:
|
|
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
|
|
elif self.inpainting_fill == 3:
|
|
self.init_latent = self.init_latent * self.mask
|
|
|
|
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
|
|
|
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
|
|
if self.initial_noise_multiplier != 1.0:
|
|
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
|
|
x *= self.initial_noise_multiplier
|
|
|
|
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
|
|
|
if self.mask is not None:
|
|
samples = samples * self.nmask + self.init_latent * self.mask
|
|
|
|
del x
|
|
devices.torch_gc()
|
|
|
|
return samples
|
|
|
|
def get_token_merging_ratio(self, for_hr=False):
|
|
return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio
|