mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
172 lines
6.0 KiB
Python
172 lines
6.0 KiB
Python
import math
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
|
from modules.shared import opts, state
|
|
import modules.shared as shared
|
|
import modules.processing as processing
|
|
from modules.ui import plaintext_to_html
|
|
import modules.images as images
|
|
import modules.scripts
|
|
|
|
def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, upscaler_index: str, upscale_overlap: int, inpaint_full_res: bool, inpainting_mask_invert: int, *args):
|
|
is_inpaint = mode == 1
|
|
is_loopback = mode == 2
|
|
is_upscale = mode == 3
|
|
|
|
if is_inpaint:
|
|
image = init_img_with_mask['image']
|
|
mask = init_img_with_mask['mask']
|
|
else:
|
|
image = init_img
|
|
mask = None
|
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
|
|
p = StableDiffusionProcessingImg2Img(
|
|
sd_model=shared.sd_model,
|
|
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
|
|
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_index=sampler_index,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
restore_faces=restore_faces,
|
|
tiling=tiling,
|
|
init_images=[image],
|
|
mask=mask,
|
|
mask_blur=mask_blur,
|
|
inpainting_fill=inpainting_fill,
|
|
resize_mode=resize_mode,
|
|
denoising_strength=denoising_strength,
|
|
inpaint_full_res=inpaint_full_res,
|
|
inpainting_mask_invert=inpainting_mask_invert,
|
|
extra_generation_params={"Denoising Strength": denoising_strength}
|
|
)
|
|
|
|
if is_loopback:
|
|
output_images, info = None, None
|
|
history = []
|
|
initial_seed = None
|
|
initial_info = None
|
|
|
|
state.job_count = n_iter
|
|
|
|
do_color_correction = False
|
|
try:
|
|
from skimage import exposure
|
|
do_color_correction = True
|
|
except:
|
|
print("Install scikit-image to perform color correction on loopback")
|
|
|
|
|
|
for i in range(n_iter):
|
|
|
|
if do_color_correction and i == 0:
|
|
correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
|
|
|
|
p.n_iter = 1
|
|
p.batch_size = 1
|
|
p.do_not_save_grid = True
|
|
|
|
state.job = f"Batch {i + 1} out of {n_iter}"
|
|
processed = process_images(p)
|
|
|
|
if initial_seed is None:
|
|
initial_seed = processed.seed
|
|
initial_info = processed.info
|
|
|
|
init_img = processed.images[0]
|
|
|
|
if do_color_correction and correction_target is not None:
|
|
print("Colour correcting input...")
|
|
init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
|
cv2.cvtColor(
|
|
np.asarray(init_img),
|
|
cv2.COLOR_RGB2LAB
|
|
),
|
|
correction_target,
|
|
channel_axis=2
|
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
|
|
|
p.init_images = [init_img]
|
|
p.seed = processed.seed + 1
|
|
p.denoising_strength = max(p.denoising_strength * 0.95, 0.1)
|
|
history.append(processed.images[0])
|
|
|
|
grid = images.image_grid(history, batch_size, rows=1)
|
|
|
|
images.save_image(grid, p.outpath_grids, "grid", initial_seed, prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename)
|
|
|
|
processed = Processed(p, history, initial_seed, initial_info)
|
|
|
|
elif is_upscale:
|
|
initial_seed = None
|
|
initial_info = None
|
|
|
|
upscaler = shared.sd_upscalers[upscaler_index]
|
|
img = upscaler.upscale(init_img, init_img.width * 2, init_img.height * 2)
|
|
|
|
processing.torch_gc()
|
|
|
|
grid = images.split_grid(img, tile_w=width, tile_h=height, overlap=upscale_overlap)
|
|
|
|
p.n_iter = 1
|
|
p.do_not_save_grid = True
|
|
p.do_not_save_samples = True
|
|
|
|
work = []
|
|
work_results = []
|
|
|
|
for y, h, row in grid.tiles:
|
|
for tiledata in row:
|
|
work.append(tiledata[2])
|
|
|
|
batch_count = math.ceil(len(work) / p.batch_size)
|
|
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} in a total of {batch_count} batches.")
|
|
|
|
state.job_count = batch_count
|
|
|
|
for i in range(batch_count):
|
|
p.init_images = work[i*p.batch_size:(i+1)*p.batch_size]
|
|
|
|
state.job = f"Batch {i + 1} out of {batch_count}"
|
|
processed = process_images(p)
|
|
|
|
if initial_seed is None:
|
|
initial_seed = processed.seed
|
|
initial_info = processed.info
|
|
|
|
p.seed = processed.seed + 1
|
|
work_results += processed.images
|
|
|
|
image_index = 0
|
|
for y, h, row in grid.tiles:
|
|
for tiledata in row:
|
|
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
|
image_index += 1
|
|
|
|
combined_image = images.combine_grid(grid)
|
|
|
|
if opts.samples_save:
|
|
images.save_image(combined_image, p.outpath_samples, "", initial_seed, prompt, opts.grid_format, info=initial_info)
|
|
|
|
processed = Processed(p, [combined_image], initial_seed, initial_info)
|
|
|
|
else:
|
|
|
|
processed = modules.scripts.scripts_img2img.run(p, *args)
|
|
|
|
if processed is None:
|
|
processed = process_images(p)
|
|
|
|
|
|
return processed.images, processed.js(), plaintext_to_html(processed.info)
|