mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-12 14:45:03 +08:00
2489252099
For MPS, using a tensor created with `torch.empty()` can cause `torch.baddbmm()` to include NaNs in the tensor it returns, even though `beta=0`. However, with a tensor of shape [1,1,1], there should be a negligible performance difference between `torch.empty()` and `torch.zeros()` anyway, so it's better to just use `torch.zeros()` for this and avoid unnecessarily creating issues.
216 lines
7.1 KiB
Python
216 lines
7.1 KiB
Python
# original source:
|
|
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
|
|
# license:
|
|
# MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license)
|
|
# credit:
|
|
# Amin Rezaei (original author)
|
|
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
|
|
# brkirch (modified to use torch.narrow instead of dynamic_slice implementation)
|
|
# implementation of:
|
|
# Self-attention Does Not Need O(n2) Memory":
|
|
# https://arxiv.org/abs/2112.05682v2
|
|
|
|
from functools import partial
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.utils.checkpoint import checkpoint
|
|
import math
|
|
from typing import Optional, NamedTuple, List
|
|
|
|
|
|
def narrow_trunc(
|
|
input: Tensor,
|
|
dim: int,
|
|
start: int,
|
|
length: int
|
|
) -> Tensor:
|
|
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
|
|
|
|
|
|
class AttnChunk(NamedTuple):
|
|
exp_values: Tensor
|
|
exp_weights_sum: Tensor
|
|
max_score: Tensor
|
|
|
|
|
|
class SummarizeChunk:
|
|
@staticmethod
|
|
def __call__(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
) -> AttnChunk: ...
|
|
|
|
|
|
class ComputeQueryChunkAttn:
|
|
@staticmethod
|
|
def __call__(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
) -> Tensor: ...
|
|
|
|
|
|
def _summarize_chunk(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
scale: float,
|
|
) -> AttnChunk:
|
|
attn_weights = torch.baddbmm(
|
|
torch.zeros(1, 1, 1, device=query.device, dtype=query.dtype),
|
|
query,
|
|
key.transpose(1,2),
|
|
alpha=scale,
|
|
beta=0,
|
|
)
|
|
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
|
|
max_score = max_score.detach()
|
|
exp_weights = torch.exp(attn_weights - max_score)
|
|
exp_values = torch.bmm(exp_weights, value) if query.device.type == 'mps' else torch.bmm(exp_weights, value.to(exp_weights.dtype)).to(value.dtype)
|
|
max_score = max_score.squeeze(-1)
|
|
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
|
|
|
|
|
def _query_chunk_attention(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
summarize_chunk: SummarizeChunk,
|
|
kv_chunk_size: int,
|
|
) -> Tensor:
|
|
batch_x_heads, k_tokens, k_channels_per_head = key.shape
|
|
_, _, v_channels_per_head = value.shape
|
|
|
|
def chunk_scanner(chunk_idx: int) -> AttnChunk:
|
|
key_chunk = narrow_trunc(
|
|
key,
|
|
1,
|
|
chunk_idx,
|
|
kv_chunk_size
|
|
)
|
|
value_chunk = narrow_trunc(
|
|
value,
|
|
1,
|
|
chunk_idx,
|
|
kv_chunk_size
|
|
)
|
|
return summarize_chunk(query, key_chunk, value_chunk)
|
|
|
|
chunks: List[AttnChunk] = [
|
|
chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
|
|
]
|
|
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
|
|
chunk_values, chunk_weights, chunk_max = acc_chunk
|
|
|
|
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
|
|
max_diffs = torch.exp(chunk_max - global_max)
|
|
chunk_values *= torch.unsqueeze(max_diffs, -1)
|
|
chunk_weights *= max_diffs
|
|
|
|
all_values = chunk_values.sum(dim=0)
|
|
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
|
return all_values / all_weights
|
|
|
|
|
|
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
|
def _get_attention_scores_no_kv_chunking(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
scale: float,
|
|
) -> Tensor:
|
|
attn_scores = torch.baddbmm(
|
|
torch.zeros(1, 1, 1, device=query.device, dtype=query.dtype),
|
|
query,
|
|
key.transpose(1,2),
|
|
alpha=scale,
|
|
beta=0,
|
|
)
|
|
attn_probs = attn_scores.softmax(dim=-1)
|
|
del attn_scores
|
|
hidden_states_slice = torch.bmm(attn_probs, value) if query.device.type == 'mps' else torch.bmm(attn_probs, value.to(attn_probs.dtype)).to(value.dtype)
|
|
return hidden_states_slice
|
|
|
|
|
|
class ScannedChunk(NamedTuple):
|
|
chunk_idx: int
|
|
attn_chunk: AttnChunk
|
|
|
|
|
|
def efficient_dot_product_attention(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
query_chunk_size=1024,
|
|
kv_chunk_size: Optional[int] = None,
|
|
kv_chunk_size_min: Optional[int] = None,
|
|
use_checkpoint=True,
|
|
):
|
|
"""Computes efficient dot-product attention given query, key, and value.
|
|
This is efficient version of attention presented in
|
|
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
|
|
Args:
|
|
query: queries for calculating attention with shape of
|
|
`[batch * num_heads, tokens, channels_per_head]`.
|
|
key: keys for calculating attention with shape of
|
|
`[batch * num_heads, tokens, channels_per_head]`.
|
|
value: values to be used in attention with shape of
|
|
`[batch * num_heads, tokens, channels_per_head]`.
|
|
query_chunk_size: int: query chunks size
|
|
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
|
|
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
|
|
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
|
|
Returns:
|
|
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
|
|
"""
|
|
batch_x_heads, q_tokens, q_channels_per_head = query.shape
|
|
_, k_tokens, _ = key.shape
|
|
scale = q_channels_per_head ** -0.5
|
|
|
|
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
|
|
if kv_chunk_size_min is not None:
|
|
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
|
|
|
|
def get_query_chunk(chunk_idx: int) -> Tensor:
|
|
return narrow_trunc(
|
|
query,
|
|
1,
|
|
chunk_idx,
|
|
min(query_chunk_size, q_tokens)
|
|
)
|
|
|
|
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale)
|
|
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
|
|
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
|
|
_get_attention_scores_no_kv_chunking,
|
|
scale=scale
|
|
) if k_tokens <= kv_chunk_size else (
|
|
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
|
|
partial(
|
|
_query_chunk_attention,
|
|
kv_chunk_size=kv_chunk_size,
|
|
summarize_chunk=summarize_chunk,
|
|
)
|
|
)
|
|
|
|
if q_tokens <= query_chunk_size:
|
|
# fast-path for when there's just 1 query chunk
|
|
return compute_query_chunk_attn(
|
|
query=query,
|
|
key=key,
|
|
value=value,
|
|
)
|
|
|
|
res = torch.zeros_like(query)
|
|
for i in range(math.ceil(q_tokens / query_chunk_size)):
|
|
attn_scores = compute_query_chunk_attn(
|
|
query=get_query_chunk(i * query_chunk_size),
|
|
key=key,
|
|
value=value,
|
|
)
|
|
|
|
res[:, i * query_chunk_size:i * query_chunk_size + attn_scores.shape[1], :] = attn_scores
|
|
|
|
return res
|