mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-27 07:39:53 +08:00
638 lines
24 KiB
Python
638 lines
24 KiB
Python
import logging
|
|
import os
|
|
import re
|
|
|
|
import lora_patches
|
|
import network
|
|
import network_lora
|
|
import network_glora
|
|
import network_hada
|
|
import network_ia3
|
|
import network_lokr
|
|
import network_full
|
|
import network_norm
|
|
import network_oft
|
|
|
|
import torch
|
|
from typing import Union
|
|
|
|
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
|
|
import modules.textual_inversion.textual_inversion as textual_inversion
|
|
|
|
from lora_logger import logger
|
|
|
|
module_types = [
|
|
network_lora.ModuleTypeLora(),
|
|
network_hada.ModuleTypeHada(),
|
|
network_ia3.ModuleTypeIa3(),
|
|
network_lokr.ModuleTypeLokr(),
|
|
network_full.ModuleTypeFull(),
|
|
network_norm.ModuleTypeNorm(),
|
|
network_glora.ModuleTypeGLora(),
|
|
network_oft.ModuleTypeOFT(),
|
|
]
|
|
|
|
|
|
re_digits = re.compile(r"\d+")
|
|
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
|
re_compiled = {}
|
|
|
|
suffix_conversion = {
|
|
"attentions": {},
|
|
"resnets": {
|
|
"conv1": "in_layers_2",
|
|
"conv2": "out_layers_3",
|
|
"norm1": "in_layers_0",
|
|
"norm2": "out_layers_0",
|
|
"time_emb_proj": "emb_layers_1",
|
|
"conv_shortcut": "skip_connection",
|
|
}
|
|
}
|
|
|
|
|
|
def convert_diffusers_name_to_compvis(key, is_sd2):
|
|
def match(match_list, regex_text):
|
|
regex = re_compiled.get(regex_text)
|
|
if regex is None:
|
|
regex = re.compile(regex_text)
|
|
re_compiled[regex_text] = regex
|
|
|
|
r = re.match(regex, key)
|
|
if not r:
|
|
return False
|
|
|
|
match_list.clear()
|
|
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
|
return True
|
|
|
|
m = []
|
|
|
|
if match(m, r"lora_unet_conv_in(.*)"):
|
|
return f'diffusion_model_input_blocks_0_0{m[0]}'
|
|
|
|
if match(m, r"lora_unet_conv_out(.*)"):
|
|
return f'diffusion_model_out_2{m[0]}'
|
|
|
|
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
|
|
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
|
|
|
|
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
|
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
|
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
|
|
|
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
|
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
|
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
|
|
|
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
|
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
|
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
|
|
|
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
|
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
|
|
|
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
|
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
|
|
|
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
|
if is_sd2:
|
|
if 'mlp_fc1' in m[1]:
|
|
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
|
elif 'mlp_fc2' in m[1]:
|
|
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
|
else:
|
|
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
|
|
|
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
|
|
|
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
|
|
if 'mlp_fc1' in m[1]:
|
|
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
|
elif 'mlp_fc2' in m[1]:
|
|
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
|
else:
|
|
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
|
|
|
return key
|
|
|
|
|
|
def assign_network_names_to_compvis_modules(sd_model):
|
|
network_layer_mapping = {}
|
|
|
|
if shared.sd_model.is_sdxl:
|
|
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
|
|
if not hasattr(embedder, 'wrapped'):
|
|
continue
|
|
|
|
for name, module in embedder.wrapped.named_modules():
|
|
network_name = f'{i}_{name.replace(".", "_")}'
|
|
network_layer_mapping[network_name] = module
|
|
module.network_layer_name = network_name
|
|
else:
|
|
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
|
network_name = name.replace(".", "_")
|
|
network_layer_mapping[network_name] = module
|
|
module.network_layer_name = network_name
|
|
|
|
for name, module in shared.sd_model.model.named_modules():
|
|
network_name = name.replace(".", "_")
|
|
network_layer_mapping[network_name] = module
|
|
module.network_layer_name = network_name
|
|
|
|
sd_model.network_layer_mapping = network_layer_mapping
|
|
|
|
|
|
def load_network(name, network_on_disk):
|
|
net = network.Network(name, network_on_disk)
|
|
net.mtime = os.path.getmtime(network_on_disk.filename)
|
|
|
|
sd = sd_models.read_state_dict(network_on_disk.filename)
|
|
|
|
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
|
|
if not hasattr(shared.sd_model, 'network_layer_mapping'):
|
|
assign_network_names_to_compvis_modules(shared.sd_model)
|
|
|
|
keys_failed_to_match = {}
|
|
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
|
|
|
|
matched_networks = {}
|
|
bundle_embeddings = {}
|
|
|
|
for key_network, weight in sd.items():
|
|
key_network_without_network_parts, _, network_part = key_network.partition(".")
|
|
|
|
if key_network_without_network_parts == "bundle_emb":
|
|
emb_name, vec_name = network_part.split(".", 1)
|
|
emb_dict = bundle_embeddings.get(emb_name, {})
|
|
if vec_name.split('.')[0] == 'string_to_param':
|
|
_, k2 = vec_name.split('.', 1)
|
|
emb_dict['string_to_param'] = {k2: weight}
|
|
else:
|
|
emb_dict[vec_name] = weight
|
|
bundle_embeddings[emb_name] = emb_dict
|
|
|
|
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
|
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
|
|
|
if sd_module is None:
|
|
m = re_x_proj.match(key)
|
|
if m:
|
|
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
|
|
|
|
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
|
|
if sd_module is None and "lora_unet" in key_network_without_network_parts:
|
|
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
|
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
|
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
|
|
|
# some SD1 Loras also have correct compvis keys
|
|
if sd_module is None:
|
|
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
|
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
|
|
|
# kohya_ss OFT module
|
|
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
|
|
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
|
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
|
|
|
# KohakuBlueLeaf OFT module
|
|
if sd_module is None and "oft_diag" in key:
|
|
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
|
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
|
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
|
|
|
if sd_module is None:
|
|
keys_failed_to_match[key_network] = key
|
|
continue
|
|
|
|
if key not in matched_networks:
|
|
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
|
|
|
|
matched_networks[key].w[network_part] = weight
|
|
|
|
for key, weights in matched_networks.items():
|
|
net_module = None
|
|
for nettype in module_types:
|
|
net_module = nettype.create_module(net, weights)
|
|
if net_module is not None:
|
|
break
|
|
|
|
if net_module is None:
|
|
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
|
|
|
|
net.modules[key] = net_module
|
|
|
|
embeddings = {}
|
|
for emb_name, data in bundle_embeddings.items():
|
|
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
|
|
embedding.loaded = None
|
|
embeddings[emb_name] = embedding
|
|
|
|
net.bundle_embeddings = embeddings
|
|
|
|
if keys_failed_to_match:
|
|
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
|
|
|
|
return net
|
|
|
|
|
|
def purge_networks_from_memory():
|
|
while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
|
|
name = next(iter(networks_in_memory))
|
|
networks_in_memory.pop(name, None)
|
|
|
|
devices.torch_gc()
|
|
|
|
|
|
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
|
|
emb_db = sd_hijack.model_hijack.embedding_db
|
|
already_loaded = {}
|
|
|
|
for net in loaded_networks:
|
|
if net.name in names:
|
|
already_loaded[net.name] = net
|
|
for emb_name, embedding in net.bundle_embeddings.items():
|
|
if embedding.loaded:
|
|
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
|
|
|
|
loaded_networks.clear()
|
|
|
|
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
|
|
if any(x is None for x in networks_on_disk):
|
|
list_available_networks()
|
|
|
|
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
|
|
|
|
failed_to_load_networks = []
|
|
|
|
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
|
|
net = already_loaded.get(name, None)
|
|
|
|
if network_on_disk is not None:
|
|
if net is None:
|
|
net = networks_in_memory.get(name)
|
|
|
|
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
|
|
try:
|
|
net = load_network(name, network_on_disk)
|
|
|
|
networks_in_memory.pop(name, None)
|
|
networks_in_memory[name] = net
|
|
except Exception as e:
|
|
errors.display(e, f"loading network {network_on_disk.filename}")
|
|
continue
|
|
|
|
net.mentioned_name = name
|
|
|
|
network_on_disk.read_hash()
|
|
|
|
if net is None:
|
|
failed_to_load_networks.append(name)
|
|
logging.info(f"Couldn't find network with name {name}")
|
|
continue
|
|
|
|
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
|
|
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
|
|
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
|
|
loaded_networks.append(net)
|
|
|
|
for emb_name, embedding in net.bundle_embeddings.items():
|
|
if embedding.loaded is None and emb_name in emb_db.word_embeddings:
|
|
logger.warning(
|
|
f'Skip bundle embedding: "{emb_name}"'
|
|
' as it was already loaded from embeddings folder'
|
|
)
|
|
continue
|
|
|
|
embedding.loaded = False
|
|
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
|
|
embedding.loaded = True
|
|
emb_db.register_embedding(embedding, shared.sd_model)
|
|
else:
|
|
emb_db.skipped_embeddings[name] = embedding
|
|
|
|
if failed_to_load_networks:
|
|
sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))
|
|
|
|
purge_networks_from_memory()
|
|
|
|
|
|
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
|
|
weights_backup = getattr(self, "network_weights_backup", None)
|
|
bias_backup = getattr(self, "network_bias_backup", None)
|
|
|
|
if weights_backup is None and bias_backup is None:
|
|
return
|
|
|
|
if weights_backup is not None:
|
|
if isinstance(self, torch.nn.MultiheadAttention):
|
|
self.in_proj_weight.copy_(weights_backup[0])
|
|
self.out_proj.weight.copy_(weights_backup[1])
|
|
else:
|
|
self.weight.copy_(weights_backup)
|
|
|
|
if bias_backup is not None:
|
|
if isinstance(self, torch.nn.MultiheadAttention):
|
|
self.out_proj.bias.copy_(bias_backup)
|
|
else:
|
|
self.bias.copy_(bias_backup)
|
|
else:
|
|
if isinstance(self, torch.nn.MultiheadAttention):
|
|
self.out_proj.bias = None
|
|
else:
|
|
self.bias = None
|
|
|
|
|
|
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
|
|
"""
|
|
Applies the currently selected set of networks to the weights of torch layer self.
|
|
If weights already have this particular set of networks applied, does nothing.
|
|
If not, restores orginal weights from backup and alters weights according to networks.
|
|
"""
|
|
|
|
network_layer_name = getattr(self, 'network_layer_name', None)
|
|
if network_layer_name is None:
|
|
return
|
|
|
|
current_names = getattr(self, "network_current_names", ())
|
|
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
|
|
|
|
weights_backup = getattr(self, "network_weights_backup", None)
|
|
if weights_backup is None and wanted_names != ():
|
|
if current_names != ():
|
|
raise RuntimeError("no backup weights found and current weights are not unchanged")
|
|
|
|
if isinstance(self, torch.nn.MultiheadAttention):
|
|
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
|
else:
|
|
weights_backup = self.weight.to(devices.cpu, copy=True)
|
|
|
|
self.network_weights_backup = weights_backup
|
|
|
|
bias_backup = getattr(self, "network_bias_backup", None)
|
|
if bias_backup is None:
|
|
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
|
|
bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
|
|
elif getattr(self, 'bias', None) is not None:
|
|
bias_backup = self.bias.to(devices.cpu, copy=True)
|
|
else:
|
|
bias_backup = None
|
|
self.network_bias_backup = bias_backup
|
|
|
|
if current_names != wanted_names:
|
|
network_restore_weights_from_backup(self)
|
|
|
|
for net in loaded_networks:
|
|
module = net.modules.get(network_layer_name, None)
|
|
if module is not None and hasattr(self, 'weight'):
|
|
try:
|
|
with torch.no_grad():
|
|
if getattr(self, 'fp16_weight', None) is None:
|
|
weight = self.weight
|
|
bias = self.bias
|
|
else:
|
|
weight = self.fp16_weight.clone().to(self.weight.device)
|
|
bias = getattr(self, 'fp16_bias', None)
|
|
if bias is not None:
|
|
bias = bias.clone().to(self.bias.device)
|
|
updown, ex_bias = module.calc_updown(weight)
|
|
|
|
if len(weight.shape) == 4 and weight.shape[1] == 9:
|
|
# inpainting model. zero pad updown to make channel[1] 4 to 9
|
|
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
|
|
|
|
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
|
|
if ex_bias is not None and hasattr(self, 'bias'):
|
|
if self.bias is None:
|
|
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
|
|
else:
|
|
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
|
|
except RuntimeError as e:
|
|
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
|
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
|
|
|
continue
|
|
|
|
module_q = net.modules.get(network_layer_name + "_q_proj", None)
|
|
module_k = net.modules.get(network_layer_name + "_k_proj", None)
|
|
module_v = net.modules.get(network_layer_name + "_v_proj", None)
|
|
module_out = net.modules.get(network_layer_name + "_out_proj", None)
|
|
|
|
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
|
try:
|
|
with torch.no_grad():
|
|
updown_q, _ = module_q.calc_updown(self.in_proj_weight)
|
|
updown_k, _ = module_k.calc_updown(self.in_proj_weight)
|
|
updown_v, _ = module_v.calc_updown(self.in_proj_weight)
|
|
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
|
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
|
|
|
|
self.in_proj_weight += updown_qkv
|
|
self.out_proj.weight += updown_out
|
|
if ex_bias is not None:
|
|
if self.out_proj.bias is None:
|
|
self.out_proj.bias = torch.nn.Parameter(ex_bias)
|
|
else:
|
|
self.out_proj.bias += ex_bias
|
|
|
|
except RuntimeError as e:
|
|
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
|
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
|
|
|
continue
|
|
|
|
if module is None:
|
|
continue
|
|
|
|
logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
|
|
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
|
|
|
self.network_current_names = wanted_names
|
|
|
|
|
|
def network_forward(module, input, original_forward):
|
|
"""
|
|
Old way of applying Lora by executing operations during layer's forward.
|
|
Stacking many loras this way results in big performance degradation.
|
|
"""
|
|
|
|
if len(loaded_networks) == 0:
|
|
return original_forward(module, input)
|
|
|
|
input = devices.cond_cast_unet(input)
|
|
|
|
network_restore_weights_from_backup(module)
|
|
network_reset_cached_weight(module)
|
|
|
|
y = original_forward(module, input)
|
|
|
|
network_layer_name = getattr(module, 'network_layer_name', None)
|
|
for lora in loaded_networks:
|
|
module = lora.modules.get(network_layer_name, None)
|
|
if module is None:
|
|
continue
|
|
|
|
y = module.forward(input, y)
|
|
|
|
return y
|
|
|
|
|
|
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
|
|
self.network_current_names = ()
|
|
self.network_weights_backup = None
|
|
self.network_bias_backup = None
|
|
|
|
|
|
def network_Linear_forward(self, input):
|
|
if shared.opts.lora_functional:
|
|
return network_forward(self, input, originals.Linear_forward)
|
|
|
|
network_apply_weights(self)
|
|
|
|
return originals.Linear_forward(self, input)
|
|
|
|
|
|
def network_Linear_load_state_dict(self, *args, **kwargs):
|
|
network_reset_cached_weight(self)
|
|
|
|
return originals.Linear_load_state_dict(self, *args, **kwargs)
|
|
|
|
|
|
def network_Conv2d_forward(self, input):
|
|
if shared.opts.lora_functional:
|
|
return network_forward(self, input, originals.Conv2d_forward)
|
|
|
|
network_apply_weights(self)
|
|
|
|
return originals.Conv2d_forward(self, input)
|
|
|
|
|
|
def network_Conv2d_load_state_dict(self, *args, **kwargs):
|
|
network_reset_cached_weight(self)
|
|
|
|
return originals.Conv2d_load_state_dict(self, *args, **kwargs)
|
|
|
|
|
|
def network_GroupNorm_forward(self, input):
|
|
if shared.opts.lora_functional:
|
|
return network_forward(self, input, originals.GroupNorm_forward)
|
|
|
|
network_apply_weights(self)
|
|
|
|
return originals.GroupNorm_forward(self, input)
|
|
|
|
|
|
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
|
|
network_reset_cached_weight(self)
|
|
|
|
return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
|
|
|
|
|
|
def network_LayerNorm_forward(self, input):
|
|
if shared.opts.lora_functional:
|
|
return network_forward(self, input, originals.LayerNorm_forward)
|
|
|
|
network_apply_weights(self)
|
|
|
|
return originals.LayerNorm_forward(self, input)
|
|
|
|
|
|
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
|
|
network_reset_cached_weight(self)
|
|
|
|
return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
|
|
|
|
|
|
def network_MultiheadAttention_forward(self, *args, **kwargs):
|
|
network_apply_weights(self)
|
|
|
|
return originals.MultiheadAttention_forward(self, *args, **kwargs)
|
|
|
|
|
|
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
|
network_reset_cached_weight(self)
|
|
|
|
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
|
|
|
|
|
|
def list_available_networks():
|
|
available_networks.clear()
|
|
available_network_aliases.clear()
|
|
forbidden_network_aliases.clear()
|
|
available_network_hash_lookup.clear()
|
|
forbidden_network_aliases.update({"none": 1, "Addams": 1})
|
|
|
|
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
|
|
|
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
|
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
|
for filename in candidates:
|
|
if os.path.isdir(filename):
|
|
continue
|
|
|
|
name = os.path.splitext(os.path.basename(filename))[0]
|
|
try:
|
|
entry = network.NetworkOnDisk(name, filename)
|
|
except OSError: # should catch FileNotFoundError and PermissionError etc.
|
|
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
|
|
continue
|
|
|
|
available_networks[name] = entry
|
|
|
|
if entry.alias in available_network_aliases:
|
|
forbidden_network_aliases[entry.alias.lower()] = 1
|
|
|
|
available_network_aliases[name] = entry
|
|
available_network_aliases[entry.alias] = entry
|
|
|
|
|
|
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
|
|
|
|
|
|
def infotext_pasted(infotext, params):
|
|
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
|
|
return # if the other extension is active, it will handle those fields, no need to do anything
|
|
|
|
added = []
|
|
|
|
for k in params:
|
|
if not k.startswith("AddNet Model "):
|
|
continue
|
|
|
|
num = k[13:]
|
|
|
|
if params.get("AddNet Module " + num) != "LoRA":
|
|
continue
|
|
|
|
name = params.get("AddNet Model " + num)
|
|
if name is None:
|
|
continue
|
|
|
|
m = re_network_name.match(name)
|
|
if m:
|
|
name = m.group(1)
|
|
|
|
multiplier = params.get("AddNet Weight A " + num, "1.0")
|
|
|
|
added.append(f"<lora:{name}:{multiplier}>")
|
|
|
|
if added:
|
|
params["Prompt"] += "\n" + "".join(added)
|
|
|
|
|
|
originals: lora_patches.LoraPatches = None
|
|
|
|
extra_network_lora = None
|
|
|
|
available_networks = {}
|
|
available_network_aliases = {}
|
|
loaded_networks = []
|
|
loaded_bundle_embeddings = {}
|
|
networks_in_memory = {}
|
|
available_network_hash_lookup = {}
|
|
forbidden_network_aliases = {}
|
|
|
|
list_available_networks()
|