mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-21 07:30:02 +08:00
141 lines
4.9 KiB
Python
141 lines
4.9 KiB
Python
import contextlib
|
|
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
from tqdm import tqdm
|
|
|
|
from modules import modelloader
|
|
from modules.shared import cmd_opts, opts, device
|
|
from modules.swinir_model_arch import SwinIR as net
|
|
from modules.upscaler import Upscaler, UpscalerData
|
|
|
|
precision_scope = (
|
|
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
|
)
|
|
|
|
|
|
class UpscalerSwinIR(Upscaler):
|
|
def __init__(self, dirname):
|
|
self.name = "SwinIR"
|
|
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
|
|
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
|
"-L_x4_GAN.pth "
|
|
self.model_name = "SwinIR 4x"
|
|
self.user_path = dirname
|
|
super().__init__()
|
|
scalers = []
|
|
model_files = self.find_models(ext_filter=[".pt", ".pth"])
|
|
for model in model_files:
|
|
if "http" in model:
|
|
name = self.model_name
|
|
else:
|
|
name = modelloader.friendly_name(model)
|
|
model_data = UpscalerData(name, model, self)
|
|
scalers.append(model_data)
|
|
self.scalers = scalers
|
|
|
|
def do_upscale(self, img, model_file):
|
|
model = self.load_model(model_file)
|
|
if model is None:
|
|
return img
|
|
model = model.to(device)
|
|
img = upscale(img, model)
|
|
try:
|
|
torch.cuda.empty_cache()
|
|
except:
|
|
pass
|
|
return img
|
|
|
|
def load_model(self, path, scale=4):
|
|
if "http" in path:
|
|
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
|
|
filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
|
|
else:
|
|
filename = path
|
|
if filename is None or not os.path.exists(filename):
|
|
return None
|
|
model = net(
|
|
upscale=scale,
|
|
in_chans=3,
|
|
img_size=64,
|
|
window_size=8,
|
|
img_range=1.0,
|
|
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
|
embed_dim=240,
|
|
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
|
mlp_ratio=2,
|
|
upsampler="nearest+conv",
|
|
resi_connection="3conv",
|
|
)
|
|
|
|
pretrained_model = torch.load(filename)
|
|
model.load_state_dict(pretrained_model["params_ema"], strict=True)
|
|
if not cmd_opts.no_half:
|
|
model = model.half()
|
|
return model
|
|
|
|
|
|
def upscale(
|
|
img,
|
|
model,
|
|
tile=opts.SWIN_tile,
|
|
tile_overlap=opts.SWIN_tile_overlap,
|
|
window_size=8,
|
|
scale=4,
|
|
):
|
|
img = np.array(img)
|
|
img = img[:, :, ::-1]
|
|
img = np.moveaxis(img, 2, 0) / 255
|
|
img = torch.from_numpy(img).float()
|
|
img = img.unsqueeze(0).to(device)
|
|
with torch.no_grad(), precision_scope("cuda"):
|
|
_, _, h_old, w_old = img.size()
|
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
|
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
|
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
|
output = inference(img, model, tile, tile_overlap, window_size, scale)
|
|
output = output[..., : h_old * scale, : w_old * scale]
|
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
if output.ndim == 3:
|
|
output = np.transpose(
|
|
output[[2, 1, 0], :, :], (1, 2, 0)
|
|
) # CHW-RGB to HCW-BGR
|
|
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
|
return Image.fromarray(output, "RGB")
|
|
|
|
|
|
def inference(img, model, tile, tile_overlap, window_size, scale):
|
|
# test the image tile by tile
|
|
b, c, h, w = img.size()
|
|
tile = min(tile, h, w)
|
|
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
|
sf = scale
|
|
|
|
stride = tile - tile_overlap
|
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
|
|
W = torch.zeros_like(E, dtype=torch.half, device=device)
|
|
|
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
|
for h_idx in h_idx_list:
|
|
for w_idx in w_idx_list:
|
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
|
out_patch = model(in_patch)
|
|
out_patch_mask = torch.ones_like(out_patch)
|
|
|
|
E[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch)
|
|
W[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch_mask)
|
|
pbar.update(1)
|
|
output = E.div_(W)
|
|
|
|
return output
|