import sys import argparse import json import os import gradio as gr import tqdm import datetime import modules.artists from modules.paths import script_path, sd_path from modules.devices import get_optimal_device import modules.styles import modules.interrogate import modules.memmon import modules.sd_models sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file model_path = os.path.join(script_path, 'models') parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; this checkpoint will be added to the list of checkpoints and loaded by default if you don't have a checkpoint selected in settings",) # This should be deprecated, but we'll leave it for a few iterations parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints (Deprecated, use '--stablediffusion-models-path'", ) parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None) parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram") parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(model_path, 'Codeformer')) parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(model_path, 'GFPGAN')) parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(model_path, 'ESRGAN')) parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(model_path, 'RealESRGAN')) parser.add_argument("--stablediffusion-models-path", type=str, help="Path to directory with Stable-diffusion checkpoints.", default=os.path.join(model_path, 'SwinIR')) parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(model_path, 'SwinIR')) parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(model_path, 'LDSR')) parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.") parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json')) parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False) parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json')) parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option") parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last") parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv')) parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False) parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) cmd_opts = parser.parse_args() if cmd_opts.ckpt_dir is not None: print("The 'ckpt-dir' arg is deprecated in favor of the 'stablediffusion-models-path' argument and will be " "removed in a future release. Please use the new option if you wish to use a custom checkpoint directory.") cmd_opts.__setattr__("stablediffusion-models-path", cmd_opts.ckpt_dir) device = get_optimal_device() batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram config_filename = cmd_opts.ui_settings_file class State: interrupted = False job = "" job_no = 0 job_count = 0 job_timestamp = '0' sampling_step = 0 sampling_steps = 0 current_latent = None current_image = None current_image_sampling_step = 0 def interrupt(self): self.interrupted = True def nextjob(self): self.job_no += 1 self.sampling_step = 0 self.current_image_sampling_step = 0 def get_job_timestamp(self): return datetime.datetime.now().strftime("%Y%m%d%H%M%S") state = State() artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv')) styles_filename = cmd_opts.styles_file prompt_styles = modules.styles.StyleDatabase(styles_filename) interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] # This was moved to webui.py with the other model "setup" calls. # modules.sd_models.list_models() def realesrgan_models_names(): import modules.realesrgan_model return [x.name for x in modules.realesrgan_model.get_realesrgan_models()] class OptionInfo: def __init__(self, default=None, label="", component=None, component_args=None, onchange=None): self.default = default self.label = label self.component = component self.component_args = component_args self.onchange = onchange self.section = None def options_section(section_identifer, options_dict): for k, v in options_dict.items(): v.section = section_identifer return options_dict hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config} options_templates = {} options_templates.update(options_section(('saving-images', "Saving images/grids"), { "samples_save": OptionInfo(True, "Always save all generated images"), "samples_format": OptionInfo('png', 'File format for images'), "samples_filename_pattern": OptionInfo("", "Images filename pattern"), "grid_save": OptionInfo(True, "Always save all generated image grids"), "grid_format": OptionInfo('png', 'File format for grids'), "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"), "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"), "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"), })) options_templates.update(options_section(('saving-paths', "Paths for saving"), { "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs), "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs), "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs), "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs), "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs), "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs), "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs), "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs), })) options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { "save_to_dirs": OptionInfo(False, "Save images to a subdirectory"), "grid_save_to_dirs": OptionInfo(False, "Save grids to subdirectory"), "directories_filename_pattern": OptionInfo("", "Directory name pattern"), "directories_max_prompt_words": OptionInfo(8, "Max prompt words", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}), })) options_templates.update(options_section(('upscaling', "Upscaling"), { "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "realesrgan_enabled_models": OptionInfo(["Real-ESRGAN 4x plus", "Real-ESRGAN 4x plus anime 6B"], "Select which RealESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), "SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}), "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}), "ldsr_pre_down": OptionInfo(1, "LDSR Pre-process downssample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}), "ldsr_post_down": OptionInfo(1, "LDSR Post-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}), })) options_templates.update(options_section(('face-restoration', "Face restoration"), { "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), "save_selected_only": OptionInfo(False, "When using 'Save' button, only save a single selected image"), })) options_templates.update(options_section(('system', "System"), { "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}), "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job. Broken in PyCharm console."), })) options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Radio, lambda: {"choices": [x.title for x in modules.sd_models.checkpoints_list.values()]}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."), "enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), })) options_templates.update(options_section(('interrogate', "Interrogate Options"), { "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"), })) options_templates.update(options_section(('ui', "User interface"), { "show_progressbar": OptionInfo(True, "Show progressbar"), "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), "return_grid": OptionInfo(True, "Show grid in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "font": OptionInfo("", "Font for image grids that have text"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { "ddim_eta": OptionInfo(0.0, "DDIM eta", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform','quad']}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), })) class Options: data = None data_labels = options_templates typemap = {int: float} def __init__(self): self.data = {k: v.default for k, v in self.data_labels.items()} def __setattr__(self, key, value): if self.data is not None: if key in self.data: self.data[key] = value return super(Options, self).__setattr__(key, value) def __getattr__(self, item): if self.data is not None: if item in self.data: return self.data[item] if item in self.data_labels: return self.data_labels[item].default return super(Options, self).__getattribute__(item) def save(self, filename): with open(filename, "w", encoding="utf8") as file: json.dump(self.data, file) def same_type(self, x, y): if x is None or y is None: return True type_x = self.typemap.get(type(x), type(x)) type_y = self.typemap.get(type(y), type(y)) return type_x == type_y def load(self, filename): with open(filename, "r", encoding="utf8") as file: self.data = json.load(file) bad_settings = 0 for k, v in self.data.items(): info = self.data_labels.get(k, None) if info is not None and not self.same_type(info.default, v): print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr) bad_settings += 1 if bad_settings > 0: print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr) def onchange(self, key, func): item = self.data_labels.get(key) item.onchange = func def dumpjson(self): d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()} return json.dumps(d) opts = Options() if os.path.exists(config_filename): opts.load(config_filename) sd_upscalers = [] sd_model = None progress_print_out = sys.stdout class TotalTQDM: def __init__(self): self._tqdm = None def reset(self): self._tqdm = tqdm.tqdm( desc="Total progress", total=state.job_count * state.sampling_steps, position=1, file=progress_print_out ) def update(self): if not opts.multiple_tqdm: return if self._tqdm is None: self.reset() self._tqdm.update() def updateTotal(self, new_total): if not opts.multiple_tqdm: return if self._tqdm is None: self.reset() self._tqdm.total=new_total def clear(self): if self._tqdm is not None: self._tqdm.close() self._tqdm = None total_tqdm = TotalTQDM() mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts) mem_mon.start()