mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-24 15:04:31 +08:00
refactor: move factorization to lyco_helpers, separate calc_updown for kohya and kb
This commit is contained in:
parent
fe1967a4c4
commit
f6c8201e56
@ -19,3 +19,50 @@ def rebuild_cp_decomposition(up, down, mid):
|
||||
up = up.reshape(up.size(0), -1)
|
||||
down = down.reshape(down.size(0), -1)
|
||||
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
|
||||
|
||||
|
||||
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
|
||||
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
|
||||
'''
|
||||
return a tuple of two value of input dimension decomposed by the number closest to factor
|
||||
second value is higher or equal than first value.
|
||||
|
||||
In LoRA with Kroneckor Product, first value is a value for weight scale.
|
||||
secon value is a value for weight.
|
||||
|
||||
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
|
||||
|
||||
examples)
|
||||
factor
|
||||
-1 2 4 8 16 ...
|
||||
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
|
||||
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
|
||||
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
|
||||
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
|
||||
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
|
||||
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
|
||||
'''
|
||||
|
||||
if factor > 0 and (dimension % factor) == 0:
|
||||
m = factor
|
||||
n = dimension // factor
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
if factor < 0:
|
||||
factor = dimension
|
||||
m, n = 1, dimension
|
||||
length = m + n
|
||||
while m<n:
|
||||
new_m = m + 1
|
||||
while dimension%new_m != 0:
|
||||
new_m += 1
|
||||
new_n = dimension // new_m
|
||||
if new_m + new_n > length or new_m>factor:
|
||||
break
|
||||
else:
|
||||
m, n = new_m, new_n
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import network
|
||||
from lyco_helpers import factorization
|
||||
from einops import rearrange
|
||||
from modules import devices
|
||||
|
||||
|
||||
class ModuleTypeOFT(network.ModuleType):
|
||||
@ -11,7 +11,8 @@ class ModuleTypeOFT(network.ModuleType):
|
||||
|
||||
return None
|
||||
|
||||
# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
||||
# adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
||||
# and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
|
||||
class NetworkModuleOFT(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
|
||||
@ -19,6 +20,7 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
|
||||
self.lin_module = None
|
||||
self.org_module: list[torch.Module] = [self.sd_module]
|
||||
|
||||
# kohya-ss
|
||||
if "oft_blocks" in weights.w.keys():
|
||||
self.is_kohya = True
|
||||
@ -37,61 +39,31 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
|
||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||
is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
|
||||
#if "Linear" in self.sd_module.__class__.__name__ or is_linear:
|
||||
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
|
||||
|
||||
if is_linear:
|
||||
self.out_dim = self.sd_module.out_features
|
||||
#elif hasattr(self.sd_module, "embed_dim"):
|
||||
# self.out_dim = self.sd_module.embed_dim
|
||||
#else:
|
||||
# raise ValueError("Linear sd_module must have out_features or embed_dim")
|
||||
elif is_other_linear:
|
||||
self.out_dim = self.sd_module.embed_dim
|
||||
#self.org_weight = self.org_module[0].weight
|
||||
# if hasattr(self.sd_module, "in_proj_weight"):
|
||||
# self.in_proj_dim = self.sd_module.in_proj_weight.shape[1]
|
||||
# if hasattr(self.sd_module, "out_proj_weight"):
|
||||
# self.out_proj_dim = self.sd_module.out_proj_weight.shape[0]
|
||||
# self.in_proj_dim = self.sd_module.in_proj_weight.shape[1]
|
||||
elif is_conv:
|
||||
self.out_dim = self.sd_module.out_channels
|
||||
else:
|
||||
raise ValueError("sd_module must be Linear or Conv")
|
||||
|
||||
|
||||
if self.is_kohya:
|
||||
self.num_blocks = self.dim
|
||||
self.block_size = self.out_dim // self.num_blocks
|
||||
self.constraint = self.alpha * self.out_dim
|
||||
#elif is_linear or is_conv:
|
||||
else:
|
||||
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
||||
self.constraint = None
|
||||
|
||||
|
||||
# if is_other_linear:
|
||||
# weight = self.oft_blocks.reshape(self.oft_blocks.shape[0], -1)
|
||||
# module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
# with torch.no_grad():
|
||||
# if weight.shape != module.weight.shape:
|
||||
# weight = weight.reshape(module.weight.shape)
|
||||
# module.weight.copy_(weight)
|
||||
# module.to(device=devices.cpu, dtype=devices.dtype)
|
||||
# module.weight.requires_grad_(False)
|
||||
# self.lin_module = module
|
||||
#return module
|
||||
|
||||
def merge_weight(self, R_weight, org_weight):
|
||||
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
||||
if org_weight.dim() == 4:
|
||||
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
||||
else:
|
||||
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
||||
#weight = torch.einsum(
|
||||
# "k n m, k n ... -> k m ...",
|
||||
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
|
||||
# org_weight
|
||||
#)
|
||||
return weight
|
||||
|
||||
def get_weight(self, oft_blocks, multiplier=None):
|
||||
@ -111,48 +83,51 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
||||
R = torch.block_diag(*block_R_weighted)
|
||||
return R
|
||||
#return self.oft_blocks
|
||||
|
||||
def calc_updown_kohya(self, orig_weight, multiplier):
|
||||
R = self.get_weight(self.oft_blocks, multiplier)
|
||||
merged_weight = self.merge_weight(R, orig_weight)
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
multiplier = self.multiplier() * self.calc_scale()
|
||||
is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
|
||||
if self.is_kohya and not is_other_linear:
|
||||
R = self.get_weight(self.oft_blocks, multiplier)
|
||||
#R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
merged_weight = self.merge_weight(R, orig_weight)
|
||||
elif not self.is_kohya and not is_other_linear:
|
||||
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
output_shape = orig_weight.shape
|
||||
orig_weight = orig_weight
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
|
||||
def calc_updown_kb(self, orig_weight, multiplier):
|
||||
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
|
||||
|
||||
if not is_other_linear:
|
||||
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
|
||||
orig_weight=orig_weight.permute(1, 0)
|
||||
|
||||
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||
#orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.block_size, n=self.num_blocks)
|
||||
merged_weight = torch.einsum(
|
||||
'k n m, k n ... -> k m ...',
|
||||
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
|
||||
merged_weight
|
||||
merged_weight
|
||||
)
|
||||
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
||||
|
||||
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
|
||||
orig_weight=orig_weight.permute(1, 0)
|
||||
#merged_weight=merged_weight.permute(1, 0)
|
||||
|
||||
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
#updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
output_shape = orig_weight.shape
|
||||
else:
|
||||
# skip for now
|
||||
# FIXME: skip MultiheadAttention for now
|
||||
updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype)
|
||||
output_shape = (orig_weight.shape[1], orig_weight.shape[1])
|
||||
|
||||
#if self.lin_module is not None:
|
||||
# R = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
# weight = torch.mul(torch.mul(R, multiplier), orig_weight)
|
||||
#else:
|
||||
|
||||
orig_weight = orig_weight
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
multiplier = self.multiplier() * self.calc_scale()
|
||||
if self.is_kohya:
|
||||
return self.calc_updown_kohya(orig_weight, multiplier)
|
||||
else:
|
||||
return self.calc_updown_kb(orig_weight, multiplier)
|
||||
|
||||
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
|
||||
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
||||
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
|
||||
@ -172,49 +147,3 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
ex_bias = ex_bias * self.multiplier()
|
||||
|
||||
return updown, ex_bias
|
||||
|
||||
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
|
||||
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
|
||||
'''
|
||||
return a tuple of two value of input dimension decomposed by the number closest to factor
|
||||
second value is higher or equal than first value.
|
||||
|
||||
In LoRA with Kroneckor Product, first value is a value for weight scale.
|
||||
secon value is a value for weight.
|
||||
|
||||
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
|
||||
|
||||
examples)
|
||||
factor
|
||||
-1 2 4 8 16 ...
|
||||
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
|
||||
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
|
||||
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
|
||||
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
|
||||
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
|
||||
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
|
||||
'''
|
||||
|
||||
if factor > 0 and (dimension % factor) == 0:
|
||||
m = factor
|
||||
n = dimension // factor
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
if factor < 0:
|
||||
factor = dimension
|
||||
m, n = 1, dimension
|
||||
length = m + n
|
||||
while m<n:
|
||||
new_m = m + 1
|
||||
while dimension%new_m != 0:
|
||||
new_m += 1
|
||||
new_n = dimension // new_m
|
||||
if new_m + new_n > length or new_m>factor:
|
||||
break
|
||||
else:
|
||||
m, n = new_m, new_n
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user