diff --git a/configs/altdiffusion/ad-inference.yaml b/configs/alt-diffusion-inference.yaml similarity index 100% rename from configs/altdiffusion/ad-inference.yaml rename to configs/alt-diffusion-inference.yaml diff --git a/v1-inference.yaml b/configs/v1-inference.yaml similarity index 100% rename from v1-inference.yaml rename to configs/v1-inference.yaml diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index bce23b036..edcbaf52b 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -5,7 +5,7 @@ import modules.textual_inversion.textual_inversion from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts -from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet +from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr from modules.sd_hijack_optimizations import invokeAI_mps_available @@ -68,6 +68,7 @@ def fix_checkpoint(): ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward + class StableDiffusionModelHijack: fixes = None comments = [] @@ -79,21 +80,22 @@ class StableDiffusionModelHijack: def hijack(self, m): - if shared.text_model_name == "XLMR-Large": + if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: model_embeddings = m.cond_stage_model.roberta.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) - m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - + m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self) + elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - apply_optimizations() + elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder: m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - apply_optimizations() - + + apply_optimizations() + self.clip = m.cond_stage_model fix_checkpoint() @@ -109,7 +111,7 @@ class StableDiffusionModelHijack: def undo_hijack(self, m): - if shared.text_model_name == "XLMR-Large": + if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: m.cond_stage_model = m.cond_stage_model.wrapped elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 9ea6e1cec..6ec50cca1 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -4,7 +4,6 @@ import torch from modules import prompt_parser, devices from modules.shared import opts -import modules.shared as shared def get_target_prompt_token_count(token_count): return math.ceil(max(token_count, 1) / 75) * 75 @@ -177,9 +176,6 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count def forward(self, text): - if shared.text_model_name == "XLMR-Large": - return self.wrapped.encode(text) - use_old = opts.use_old_emphasis_implementation if use_old: batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) @@ -257,13 +253,13 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): def __init__(self, wrapped, hijack): super().__init__(wrapped, hijack) self.tokenizer = wrapped.tokenizer - if shared.text_model_name == "XLMR-Large": - self.comma_token = None - else : - self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0] + + vocab = self.tokenizer.get_vocab() + + self.comma_token = vocab.get(',', None) self.token_mults = {} - tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] + tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] for text, ident in tokens_with_parens: mult = 1.0 for c in text: diff --git a/modules/sd_hijack_xlmr.py b/modules/sd_hijack_xlmr.py new file mode 100644 index 000000000..4ac51c386 --- /dev/null +++ b/modules/sd_hijack_xlmr.py @@ -0,0 +1,34 @@ +import open_clip.tokenizer +import torch + +from modules import sd_hijack_clip, devices +from modules.shared import opts + + +class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords): + def __init__(self, wrapped, hijack): + super().__init__(wrapped, hijack) + + self.id_start = wrapped.config.bos_token_id + self.id_end = wrapped.config.eos_token_id + self.id_pad = wrapped.config.pad_token_id + + self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have bits for comma + + def encode_with_transformers(self, tokens): + # there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a + # trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer + # layer to work with - you have to use the last + + attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64) + features = self.wrapped(input_ids=tokens, attention_mask=attention_mask) + z = features['projection_state'] + + return z + + def encode_embedding_init_text(self, init_text, nvpt): + embedding_layer = self.wrapped.roberta.embeddings + ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] + embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0) + + return embedded diff --git a/modules/shared.py b/modules/shared.py index 2b31e7170..715b9169e 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -23,7 +23,7 @@ demo = None sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file parser = argparse.ArgumentParser() -parser.add_argument("--config", type=str, default=os.path.join(script_path, "v1-inference.yaml"), help="path to config which constructs model",) +parser.add_argument("--config", type=str, default=os.path.join(script_path, "configs/v1-inference.yaml"), help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",) parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints") parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) @@ -108,14 +108,6 @@ restricted_opts = { "outdir_txt2img_grids", "outdir_save", } -from omegaconf import OmegaConf -config = OmegaConf.load(f"{cmd_opts.config}") -# XLMR-Large -try: - text_model_name = config.model.params.cond_stage_config.params.name - -except : - text_model_name = "stable_diffusion" cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access