do not unnecessarily run VAE one more time when saving intermediate image with hires fix

This commit is contained in:
AUTOMATIC 2022-11-02 12:45:03 +03:00
parent 9c67408004
commit eb5e82c7dd
4 changed files with 23 additions and 22 deletions

View File

@ -199,7 +199,7 @@ class StableDiffusionProcessing():
def init(self, all_prompts, all_seeds, all_subseeds): def init(self, all_prompts, all_seeds, all_subseeds):
pass pass
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
raise NotImplementedError() raise NotImplementedError()
def close(self): def close(self):
@ -521,11 +521,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
shared.state.job = f"Batch {n+1} out of {p.n_iter}" shared.state.job = f"Batch {n+1} out of {p.n_iter}"
with devices.autocast(): with devices.autocast():
# Only Txt2Img needs an extra argument, n, when saving intermediate images pre highres fix. samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
if isinstance(p, StableDiffusionProcessingTxt2Img):
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, n=n)
else:
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
samples_ddim = samples_ddim.to(devices.dtype_vae) samples_ddim = samples_ddim.to(devices.dtype_vae)
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
@ -653,7 +649,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, n=0): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr: if not self.enable_hr:
@ -666,9 +662,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
"""saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images"""
def save_intermediate(image, index):
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
return
if not isinstance(image, Image.Image):
image = sd_samplers.sample_to_image(image, index)
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
if opts.use_scale_latent_for_hires_fix: if opts.use_scale_latent_for_hires_fix:
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
for i in range(samples.shape[0]):
save_intermediate(samples, i)
else: else:
decoded_samples = decode_first_stage(self.sd_model, samples) decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
@ -678,6 +686,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8) x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample) image = Image.fromarray(x_sample)
save_intermediate(image, i)
image = images.resize_image(0, image, self.width, self.height) image = images.resize_image(0, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0 image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0) image = np.moveaxis(image, 2, 0)
@ -689,15 +700,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
# Save a copy of the image/s before doing highres fix, if applicable.
if opts.save and not self.do_not_save_samples and opts.save_images_before_highres_fix:
for i in range(self.batch_size):
# This batch's ith image.
img = sd_samplers.sample_to_image(samples, i)
# Index that accounts for both batch size and batch count.
ind = i + self.batch_size*n
images.save_image(img, self.outpath_samples, "", self.all_seeds[ind], self.all_prompts[ind], opts.samples_format, suffix=f"-before-highres-fix")
shared.state.nextjob() shared.state.nextjob()
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
@ -844,8 +846,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask) self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
@ -856,4 +857,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
del x del x
devices.torch_gc() devices.torch_gc()
return samples return samples

View File

@ -96,6 +96,7 @@ def single_sample_to_image(sample):
def sample_to_image(samples, index=0): def sample_to_image(samples, index=0):
return single_sample_to_image(samples[index]) return single_sample_to_image(samples[index])
def samples_to_image_grid(samples): def samples_to_image_grid(samples):
return images.image_grid([single_sample_to_image(sample) for sample in samples]) return images.image_grid([single_sample_to_image(sample) for sample in samples])

View File

@ -256,6 +256,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."), "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
@ -322,7 +323,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."), "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),

View File

@ -166,8 +166,7 @@ class Script(scripts.Script):
if override_strength: if override_strength:
p.denoising_strength = 1.0 p.denoising_strength = 1.0
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
lat = (p.init_latent.cpu().numpy() * 10).astype(int) lat = (p.init_latent.cpu().numpy() * 10).astype(int)
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \ same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \