mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 14:55:09 +08:00
restart-sampler with correct steps
This commit is contained in:
parent
7bb0fbed13
commit
ddbf4a73f5
@ -38,20 +38,19 @@ samplers_k_diffusion = [
|
||||
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.):
|
||||
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
|
||||
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
|
||||
restart_list = {0.1: [10, 2, 2]}
|
||||
from tqdm.auto import trange
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
step_id = 0
|
||||
from k_diffusion.sampling import to_d, append_zero
|
||||
def heun_step(x, old_sigma, new_sigma):
|
||||
def heun_step(x, old_sigma, new_sigma, second_order = True):
|
||||
nonlocal step_id
|
||||
denoised = model(x, old_sigma * s_in, **extra_args)
|
||||
d = to_d(x, old_sigma, denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
|
||||
dt = new_sigma - old_sigma
|
||||
if new_sigma == 0:
|
||||
if new_sigma == 0 or not second_order:
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
else:
|
||||
@ -63,11 +62,6 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
||||
x = x + d_prime * dt
|
||||
step_id += 1
|
||||
return x
|
||||
# print(sigmas)
|
||||
temp_list = dict()
|
||||
for key, value in restart_list.items():
|
||||
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
|
||||
restart_list = temp_list
|
||||
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
||||
ramp = torch.linspace(0, 1, n).to(device)
|
||||
min_inv_rho = (sigma_min ** (1 / rho))
|
||||
@ -78,6 +72,18 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
||||
max_inv_rho = max_inv_rho.to(device)
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return append_zero(sigmas).to(device)
|
||||
steps = sigmas.shape[0] - 1
|
||||
if steps >= 20:
|
||||
restart_steps = 9
|
||||
restart_times = 2 if steps >= 36 else 1
|
||||
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2], sigmas[0], device=sigmas.device)
|
||||
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
||||
else:
|
||||
restart_list = dict()
|
||||
temp_list = dict()
|
||||
for key, value in restart_list.items():
|
||||
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
|
||||
restart_list = temp_list
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
x = heun_step(x, sigmas[i], sigmas[i+1])
|
||||
if i + 1 in restart_list:
|
||||
|
Loading…
Reference in New Issue
Block a user