mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-21 03:11:40 +08:00
added torch.mps.empty_cache() to torch_gc()
changed a bunch of places that use torch.cuda.empty_cache() to use torch_gc() instead
This commit is contained in:
parent
e161b5a025
commit
da8916f926
@ -12,7 +12,7 @@ import safetensors.torch
|
||||
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.util import instantiate_from_config, ismap
|
||||
from modules import shared, sd_hijack
|
||||
from modules import shared, sd_hijack, devices
|
||||
|
||||
cached_ldsr_model: torch.nn.Module = None
|
||||
|
||||
@ -112,8 +112,7 @@ class LDSR:
|
||||
|
||||
|
||||
gc.collect()
|
||||
if torch.cuda.is_available:
|
||||
torch.cuda.empty_cache()
|
||||
devices.torch_gc()
|
||||
|
||||
im_og = image
|
||||
width_og, height_og = im_og.size
|
||||
@ -150,8 +149,7 @@ class LDSR:
|
||||
|
||||
del model
|
||||
gc.collect()
|
||||
if torch.cuda.is_available:
|
||||
torch.cuda.empty_cache()
|
||||
devices.torch_gc()
|
||||
|
||||
return a
|
||||
|
||||
|
@ -85,7 +85,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||
|
||||
def do_upscale(self, img: PIL.Image.Image, selected_file):
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
devices.torch_gc()
|
||||
|
||||
try:
|
||||
model = self.load_model(selected_file)
|
||||
@ -110,7 +110,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
|
||||
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
|
||||
del torch_img, torch_output
|
||||
torch.cuda.empty_cache()
|
||||
devices.torch_gc()
|
||||
|
||||
output = np_output.transpose((1, 2, 0)) # CHW to HWC
|
||||
output = output[:, :, ::-1] # BGR to RGB
|
||||
|
@ -42,10 +42,7 @@ class UpscalerSwinIR(Upscaler):
|
||||
return img
|
||||
model = model.to(device_swinir, dtype=devices.dtype)
|
||||
img = upscale(img, model)
|
||||
try:
|
||||
torch.cuda.empty_cache()
|
||||
except Exception:
|
||||
pass
|
||||
devices.torch_gc()
|
||||
return img
|
||||
|
||||
def load_model(self, path, scale=4):
|
||||
|
@ -99,7 +99,7 @@ def setup_model(dirname):
|
||||
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
|
||||
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
||||
del output
|
||||
torch.cuda.empty_cache()
|
||||
devices.torch_gc()
|
||||
except Exception:
|
||||
errors.report('Failed inference for CodeFormer', exc_info=True)
|
||||
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
||||
|
@ -49,10 +49,13 @@ def get_device_for(task):
|
||||
|
||||
|
||||
def torch_gc():
|
||||
|
||||
if torch.cuda.is_available():
|
||||
with torch.cuda.device(get_cuda_device_string()):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
elif has_mps() and hasattr(torch.mps, 'empty_cache'):
|
||||
torch.mps.empty_cache()
|
||||
|
||||
|
||||
def enable_tf32():
|
||||
|
@ -590,7 +590,6 @@ def unload_model_weights(sd_model=None, info=None):
|
||||
sd_model = None
|
||||
gc.collect()
|
||||
devices.torch_gc()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
print(f"Unloaded weights {timer.summary()}.")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user