mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
Merge pull request #14477 from akx/spandrel-type-fix
Be more clear about Spandrel model nomenclature and types
This commit is contained in:
commit
ce21840a04
@ -71,7 +71,7 @@ class UpscalerSwinIR(Upscaler):
|
||||
else:
|
||||
filename = path
|
||||
|
||||
model = modelloader.load_spandrel_model(
|
||||
model_descriptor = modelloader.load_spandrel_model(
|
||||
filename,
|
||||
device=self._get_device(),
|
||||
dtype=devices.dtype,
|
||||
@ -79,10 +79,10 @@ class UpscalerSwinIR(Upscaler):
|
||||
)
|
||||
if getattr(opts, 'SWIN_torch_compile', False):
|
||||
try:
|
||||
model = torch.compile(model)
|
||||
model_descriptor.model.compile()
|
||||
except Exception:
|
||||
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True)
|
||||
return model
|
||||
return model_descriptor
|
||||
|
||||
def _get_device(self):
|
||||
return devices.get_device_for('swinir')
|
||||
|
@ -3,6 +3,8 @@ from __future__ import annotations
|
||||
import logging
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from modules import (
|
||||
devices,
|
||||
errors,
|
||||
@ -25,7 +27,7 @@ class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration):
|
||||
def get_device(self):
|
||||
return devices.device_gfpgan
|
||||
|
||||
def load_net(self) -> None:
|
||||
def load_net(self) -> torch.Module:
|
||||
for model_path in modelloader.load_models(
|
||||
model_path=self.model_path,
|
||||
model_url=model_url,
|
||||
@ -34,13 +36,13 @@ class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration):
|
||||
ext_filter=['.pth'],
|
||||
):
|
||||
if 'GFPGAN' in os.path.basename(model_path):
|
||||
net = modelloader.load_spandrel_model(
|
||||
model = modelloader.load_spandrel_model(
|
||||
model_path,
|
||||
device=self.get_device(),
|
||||
expected_architecture='GFPGAN',
|
||||
).model
|
||||
net.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
|
||||
return net
|
||||
model.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
|
||||
return model
|
||||
raise ValueError("No GFPGAN model found")
|
||||
|
||||
def restore(self, np_image):
|
||||
|
@ -1,8 +1,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
import importlib
|
||||
from typing import TYPE_CHECKING
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import torch
|
||||
@ -10,6 +11,8 @@ import torch
|
||||
from modules import shared
|
||||
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import spandrel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -140,19 +143,19 @@ def load_spandrel_model(
|
||||
*,
|
||||
device: str | torch.device | None,
|
||||
half: bool = False,
|
||||
dtype: str | None = None,
|
||||
dtype: str | torch.dtype | None = None,
|
||||
expected_architecture: str | None = None,
|
||||
):
|
||||
) -> spandrel.ModelDescriptor:
|
||||
import spandrel
|
||||
model = spandrel.ModelLoader(device=device).load_from_file(path)
|
||||
if expected_architecture and model.architecture != expected_architecture:
|
||||
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(path)
|
||||
if expected_architecture and model_descriptor.architecture != expected_architecture:
|
||||
logger.warning(
|
||||
f"Model {path!r} is not a {expected_architecture!r} model (got {model.architecture!r})",
|
||||
f"Model {path!r} is not a {expected_architecture!r} model (got {model_descriptor.architecture!r})",
|
||||
)
|
||||
if half:
|
||||
model = model.model.half()
|
||||
model_descriptor.model.half()
|
||||
if dtype:
|
||||
model = model.model.to(dtype=dtype)
|
||||
model.eval()
|
||||
logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", model, path, device, half, dtype)
|
||||
return model
|
||||
model_descriptor.model.to(dtype=dtype)
|
||||
model_descriptor.model.eval()
|
||||
logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", model_descriptor, path, device, half, dtype)
|
||||
return model_descriptor
|
||||
|
@ -36,14 +36,14 @@ class UpscalerRealESRGAN(Upscaler):
|
||||
errors.report(f"Unable to load RealESRGAN model {path}", exc_info=True)
|
||||
return img
|
||||
|
||||
mod = modelloader.load_spandrel_model(
|
||||
model_descriptor = modelloader.load_spandrel_model(
|
||||
info.local_data_path,
|
||||
device=self.device,
|
||||
half=(not cmd_opts.no_half and not cmd_opts.upcast_sampling),
|
||||
expected_architecture="ESRGAN", # "RealESRGAN" isn't a specific thing for Spandrel
|
||||
)
|
||||
return upscale_with_model(
|
||||
mod,
|
||||
model_descriptor,
|
||||
img,
|
||||
tile_size=opts.ESRGAN_tile,
|
||||
tile_overlap=opts.ESRGAN_tile_overlap,
|
||||
|
@ -6,7 +6,7 @@ import torch
|
||||
import tqdm
|
||||
from PIL import Image
|
||||
|
||||
from modules import devices, images
|
||||
from modules import images
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user