mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
Merge pull request #14476 from akx/dedupe-tiled-weighted-inference
Deduplicate tiled inference code from SwinIR/ScuNET
This commit is contained in:
commit
a84e842189
@ -3,12 +3,11 @@ import sys
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import modules.upscaler
|
||||
from modules import devices, modelloader, script_callbacks, errors
|
||||
|
||||
from modules.shared import opts
|
||||
from modules.upscaler_utils import tiled_upscale_2
|
||||
|
||||
|
||||
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||
@ -40,47 +39,6 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||
scalers.append(scaler_data2)
|
||||
self.scalers = scalers
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def tiled_inference(img, model):
|
||||
# test the image tile by tile
|
||||
h, w = img.shape[2:]
|
||||
tile = opts.SCUNET_tile
|
||||
tile_overlap = opts.SCUNET_tile_overlap
|
||||
if tile == 0:
|
||||
return model(img)
|
||||
|
||||
device = devices.get_device_for('scunet')
|
||||
assert tile % 8 == 0, "tile size should be a multiple of window_size"
|
||||
sf = 1
|
||||
|
||||
stride = tile - tile_overlap
|
||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
|
||||
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
||||
|
||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
|
||||
for h_idx in h_idx_list:
|
||||
|
||||
for w_idx in w_idx_list:
|
||||
|
||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
||||
|
||||
out_patch = model(in_patch)
|
||||
out_patch_mask = torch.ones_like(out_patch)
|
||||
|
||||
E[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch)
|
||||
W[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch_mask)
|
||||
pbar.update(1)
|
||||
output = E.div_(W)
|
||||
|
||||
return output
|
||||
|
||||
def do_upscale(self, img: PIL.Image.Image, selected_file):
|
||||
|
||||
devices.torch_gc()
|
||||
@ -104,7 +62,16 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||
_img[:, :, :h, :w] = torch_img # pad image
|
||||
torch_img = _img
|
||||
|
||||
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
|
||||
with torch.no_grad():
|
||||
torch_output = tiled_upscale_2(
|
||||
torch_img,
|
||||
model,
|
||||
tile_size=opts.SCUNET_tile,
|
||||
tile_overlap=opts.SCUNET_tile_overlap,
|
||||
scale=1,
|
||||
device=devices.get_device_for('scunet'),
|
||||
desc="ScuNET tiles",
|
||||
).squeeze(0)
|
||||
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
|
||||
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
|
||||
del torch_img, torch_output
|
||||
|
@ -4,11 +4,11 @@ import sys
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from modules import modelloader, devices, script_callbacks, shared
|
||||
from modules.shared import opts, state
|
||||
from modules.shared import opts
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
from modules.upscaler_utils import tiled_upscale_2
|
||||
|
||||
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
|
||||
|
||||
@ -110,14 +110,14 @@ def upscale(
|
||||
w_pad = (w_old // window_size + 1) * window_size - w_old
|
||||
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
||||
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
||||
output = inference(
|
||||
output = tiled_upscale_2(
|
||||
img,
|
||||
model,
|
||||
tile=tile,
|
||||
tile_size=tile,
|
||||
tile_overlap=tile_overlap,
|
||||
window_size=window_size,
|
||||
scale=scale,
|
||||
device=device,
|
||||
desc="SwinIR tiles",
|
||||
)
|
||||
output = output[..., : h_old * scale, : w_old * scale]
|
||||
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
@ -129,53 +129,6 @@ def upscale(
|
||||
return Image.fromarray(output, "RGB")
|
||||
|
||||
|
||||
def inference(
|
||||
img,
|
||||
model,
|
||||
*,
|
||||
tile: int,
|
||||
tile_overlap: int,
|
||||
window_size: int,
|
||||
scale: int,
|
||||
device,
|
||||
):
|
||||
# test the image tile by tile
|
||||
b, c, h, w = img.size()
|
||||
tile = min(tile, h, w)
|
||||
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
||||
sf = scale
|
||||
|
||||
stride = tile - tile_overlap
|
||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device).type_as(img)
|
||||
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
||||
|
||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
||||
for h_idx in h_idx_list:
|
||||
if state.interrupted or state.skipped:
|
||||
break
|
||||
|
||||
for w_idx in w_idx_list:
|
||||
if state.interrupted or state.skipped:
|
||||
break
|
||||
|
||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
||||
out_patch = model(in_patch)
|
||||
out_patch_mask = torch.ones_like(out_patch)
|
||||
|
||||
E[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch)
|
||||
W[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch_mask)
|
||||
pbar.update(1)
|
||||
output = E.div_(W)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def on_ui_settings():
|
||||
import gradio as gr
|
||||
|
||||
|
@ -6,7 +6,7 @@ import torch
|
||||
import tqdm
|
||||
from PIL import Image
|
||||
|
||||
from modules import images
|
||||
from modules import images, shared
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -68,3 +68,73 @@ def upscale_with_model(
|
||||
overlap=grid.overlap * scale_factor,
|
||||
)
|
||||
return images.combine_grid(newgrid)
|
||||
|
||||
|
||||
def tiled_upscale_2(
|
||||
img,
|
||||
model,
|
||||
*,
|
||||
tile_size: int,
|
||||
tile_overlap: int,
|
||||
scale: int,
|
||||
device,
|
||||
desc="Tiled upscale",
|
||||
):
|
||||
# Alternative implementation of `upscale_with_model` originally used by
|
||||
# SwinIR and ScuNET. It differs from `upscale_with_model` in that tiling and
|
||||
# weighting is done in PyTorch space, as opposed to `images.Grid` doing it in
|
||||
# Pillow space without weighting.
|
||||
b, c, h, w = img.size()
|
||||
tile_size = min(tile_size, h, w)
|
||||
|
||||
if tile_size <= 0:
|
||||
logger.debug("Upscaling %s without tiling", img.shape)
|
||||
return model(img)
|
||||
|
||||
stride = tile_size - tile_overlap
|
||||
h_idx_list = list(range(0, h - tile_size, stride)) + [h - tile_size]
|
||||
w_idx_list = list(range(0, w - tile_size, stride)) + [w - tile_size]
|
||||
result = torch.zeros(
|
||||
b,
|
||||
c,
|
||||
h * scale,
|
||||
w * scale,
|
||||
device=device,
|
||||
).type_as(img)
|
||||
weights = torch.zeros_like(result)
|
||||
logger.debug("Upscaling %s to %s with tiles", img.shape, result.shape)
|
||||
with tqdm.tqdm(total=len(h_idx_list) * len(w_idx_list), desc=desc) as pbar:
|
||||
for h_idx in h_idx_list:
|
||||
if shared.state.interrupted or shared.state.skipped:
|
||||
break
|
||||
|
||||
for w_idx in w_idx_list:
|
||||
if shared.state.interrupted or shared.state.skipped:
|
||||
break
|
||||
|
||||
in_patch = img[
|
||||
...,
|
||||
h_idx : h_idx + tile_size,
|
||||
w_idx : w_idx + tile_size,
|
||||
]
|
||||
out_patch = model(in_patch)
|
||||
|
||||
result[
|
||||
...,
|
||||
h_idx * scale : (h_idx + tile_size) * scale,
|
||||
w_idx * scale : (w_idx + tile_size) * scale,
|
||||
].add_(out_patch)
|
||||
|
||||
out_patch_mask = torch.ones_like(out_patch)
|
||||
|
||||
weights[
|
||||
...,
|
||||
h_idx * scale : (h_idx + tile_size) * scale,
|
||||
w_idx * scale : (w_idx + tile_size) * scale,
|
||||
].add_(out_patch_mask)
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
output = result.div_(weights)
|
||||
|
||||
return output
|
||||
|
Loading…
Reference in New Issue
Block a user