mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-24 15:04:31 +08:00
Merge pull request #14973 from AUTOMATIC1111/Fix-new-oft-boft
Fix the OFT/BOFT bugs when using new LyCORIS implementation
This commit is contained in:
parent
3069716510
commit
a10c8df876
@ -1,6 +1,5 @@
|
||||
import torch
|
||||
import network
|
||||
from lyco_helpers import factorization
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
@ -22,24 +21,24 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
self.org_module: list[torch.Module] = [self.sd_module]
|
||||
|
||||
self.scale = 1.0
|
||||
self.is_kohya = False
|
||||
self.is_R = False
|
||||
self.is_boft = False
|
||||
|
||||
# kohya-ss
|
||||
# kohya-ss/New LyCORIS OFT/BOFT
|
||||
if "oft_blocks" in weights.w.keys():
|
||||
self.is_kohya = True
|
||||
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
|
||||
self.alpha = weights.w["alpha"] # alpha is constraint
|
||||
self.alpha = weights.w.get("alpha", None) # alpha is constraint
|
||||
self.dim = self.oft_blocks.shape[0] # lora dim
|
||||
# LyCORIS OFT
|
||||
# Old LyCORIS OFT
|
||||
elif "oft_diag" in weights.w.keys():
|
||||
self.is_R = True
|
||||
self.oft_blocks = weights.w["oft_diag"]
|
||||
# self.alpha is unused
|
||||
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
|
||||
|
||||
# LyCORIS BOFT
|
||||
if weights.w["oft_diag"].dim() == 4:
|
||||
self.is_boft = True
|
||||
# LyCORIS BOFT
|
||||
if self.oft_blocks.dim() == 4:
|
||||
self.is_boft = True
|
||||
self.rescale = weights.w.get('rescale', None)
|
||||
if self.rescale is not None:
|
||||
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
|
||||
@ -55,30 +54,29 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
elif is_other_linear:
|
||||
self.out_dim = self.sd_module.embed_dim
|
||||
|
||||
if self.is_kohya:
|
||||
self.constraint = self.alpha * self.out_dim
|
||||
self.num_blocks = self.dim
|
||||
self.block_size = self.out_dim // self.dim
|
||||
self.num_blocks = self.dim
|
||||
self.block_size = self.out_dim // self.dim
|
||||
self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
|
||||
if self.is_R:
|
||||
self.constraint = None
|
||||
self.block_size = self.dim
|
||||
self.num_blocks = self.out_dim // self.dim
|
||||
elif self.is_boft:
|
||||
self.constraint = None
|
||||
self.boft_m = weights.w["oft_diag"].shape[0]
|
||||
self.block_num = weights.w["oft_diag"].shape[1]
|
||||
self.block_size = weights.w["oft_diag"].shape[2]
|
||||
self.boft_m = self.oft_blocks.shape[0]
|
||||
self.num_blocks = self.oft_blocks.shape[1]
|
||||
self.block_size = self.oft_blocks.shape[2]
|
||||
self.boft_b = self.block_size
|
||||
#self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim)
|
||||
else:
|
||||
self.constraint = None
|
||||
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
oft_blocks = self.oft_blocks.to(orig_weight.device)
|
||||
eye = torch.eye(self.block_size, device=oft_blocks.device)
|
||||
|
||||
if self.is_kohya:
|
||||
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
|
||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
if not self.is_R:
|
||||
block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix
|
||||
if self.constraint != 0:
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
|
||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
|
||||
|
||||
R = oft_blocks.to(orig_weight.device)
|
||||
|
Loading…
Reference in New Issue
Block a user