mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
Merge pull request #10365 from Sakura-Luna/taesd-a
Add Tiny AE live preview
This commit is contained in:
commit
9ac85b8b73
@ -158,5 +158,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
|
||||
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
|
||||
- Security advice - RyotaK
|
||||
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
|
||||
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
|
||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||
- (You)
|
||||
|
@ -661,4 +661,30 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
</pre>
|
||||
|
||||
<h2><a href="https://github.com/madebyollin/taesd/blob/main/LICENSE">TAESD</a></h2>
|
||||
<small>Tiny AutoEncoder for Stable Diffusion option for live previews</small>
|
||||
<pre>
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Ollin Boer Bohan
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
</pre>
|
@ -2,7 +2,7 @@ from collections import namedtuple
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from modules import devices, processing, images, sd_vae_approx, sd_samplers
|
||||
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd
|
||||
|
||||
from modules.shared import opts, state
|
||||
import modules.shared as shared
|
||||
@ -22,10 +22,11 @@ def setup_img2img_steps(p, steps=None):
|
||||
return steps, t_enc
|
||||
|
||||
|
||||
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
|
||||
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
|
||||
|
||||
|
||||
def single_sample_to_image(sample, approximation=None):
|
||||
|
||||
if approximation is None:
|
||||
approximation = approximation_indexes.get(opts.show_progress_type, 0)
|
||||
|
||||
@ -33,12 +34,17 @@ def single_sample_to_image(sample, approximation=None):
|
||||
x_sample = sd_vae_approx.cheap_approximation(sample)
|
||||
elif approximation == 1:
|
||||
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
|
||||
elif approximation == 3:
|
||||
x_sample = sd_vae_taesd.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
|
||||
x_sample = sd_vae_taesd.TAESD.unscale_latents(x_sample) # returns value in [-2, 2]
|
||||
x_sample = x_sample * 0.5
|
||||
else:
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
|
||||
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
|
||||
return Image.fromarray(x_sample)
|
||||
|
||||
|
||||
|
88
modules/sd_vae_taesd.py
Normal file
88
modules/sd_vae_taesd.py
Normal file
@ -0,0 +1,88 @@
|
||||
"""
|
||||
Tiny AutoEncoder for Stable Diffusion
|
||||
(DNN for encoding / decoding SD's latent space)
|
||||
|
||||
https://github.com/madebyollin/taesd
|
||||
"""
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from modules import devices, paths_internal
|
||||
|
||||
sd_vae_taesd = None
|
||||
|
||||
|
||||
def conv(n_in, n_out, **kwargs):
|
||||
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
||||
|
||||
|
||||
class Clamp(nn.Module):
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return torch.tanh(x / 3) * 3
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, n_in, n_out):
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
|
||||
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
||||
self.fuse = nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.fuse(self.conv(x) + self.skip(x))
|
||||
|
||||
|
||||
def decoder():
|
||||
return nn.Sequential(
|
||||
Clamp(), conv(4, 64), nn.ReLU(),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), conv(64, 3),
|
||||
)
|
||||
|
||||
|
||||
class TAESD(nn.Module):
|
||||
latent_magnitude = 2
|
||||
latent_shift = 0.5
|
||||
|
||||
def __init__(self, decoder_path="taesd_decoder.pth"):
|
||||
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
|
||||
super().__init__()
|
||||
self.decoder = decoder()
|
||||
self.decoder.load_state_dict(
|
||||
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
||||
|
||||
@staticmethod
|
||||
def unscale_latents(x):
|
||||
"""[0, 1] -> raw latents"""
|
||||
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
||||
|
||||
|
||||
def download_model(model_path):
|
||||
model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
|
||||
|
||||
if not os.path.exists(model_path):
|
||||
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
||||
|
||||
print(f'Downloading TAESD decoder to: {model_path}')
|
||||
torch.hub.download_url_to_file(model_url, model_path)
|
||||
|
||||
|
||||
def model():
|
||||
global sd_vae_taesd
|
||||
|
||||
if sd_vae_taesd is None:
|
||||
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth")
|
||||
download_model(model_path)
|
||||
|
||||
if os.path.exists(model_path):
|
||||
sd_vae_taesd = TAESD(model_path)
|
||||
sd_vae_taesd.eval()
|
||||
sd_vae_taesd.to(devices.device, devices.dtype)
|
||||
else:
|
||||
raise FileNotFoundError('TAESD model not found')
|
||||
|
||||
return sd_vae_taesd.decoder
|
@ -448,7 +448,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
|
||||
"live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
|
||||
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
||||
"show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
|
||||
"show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}).info("Full = slow but pretty; Approx NN = fast but low quality; Approx cheap = super fast but terrible otherwise"),
|
||||
"show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
|
||||
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
|
||||
"live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
|
||||
}))
|
||||
|
Loading…
Reference in New Issue
Block a user