diff --git a/README.md b/README.md index 67a1a83a3..c1e193c03 100644 --- a/README.md +++ b/README.md @@ -158,5 +158,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al - Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC +- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You) diff --git a/html/licenses.html b/html/licenses.html index bc995aa07..ef6f2c0a4 100644 --- a/html/licenses.html +++ b/html/licenses.html @@ -661,4 +661,30 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + +

TAESD

+Tiny AutoEncoder for Stable Diffusion option for live previews +
+MIT License
+
+Copyright (c) 2023 Ollin Boer Bohan
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
 
\ No newline at end of file diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 92880cafd..ceda6a357 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -2,7 +2,7 @@ from collections import namedtuple import numpy as np import torch from PIL import Image -from modules import devices, processing, images, sd_vae_approx, sd_samplers +from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd from modules.shared import opts, state import modules.shared as shared @@ -22,10 +22,11 @@ def setup_img2img_steps(p, steps=None): return steps, t_enc -approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2} +approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3} def single_sample_to_image(sample, approximation=None): + if approximation is None: approximation = approximation_indexes.get(opts.show_progress_type, 0) @@ -33,12 +34,17 @@ def single_sample_to_image(sample, approximation=None): x_sample = sd_vae_approx.cheap_approximation(sample) elif approximation == 1: x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() + elif approximation == 3: + x_sample = sd_vae_taesd.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() + x_sample = sd_vae_taesd.TAESD.unscale_latents(x_sample) # returns value in [-2, 2] + x_sample = x_sample * 0.5 else: x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) + return Image.fromarray(x_sample) diff --git a/modules/sd_vae_taesd.py b/modules/sd_vae_taesd.py new file mode 100644 index 000000000..d23812ef1 --- /dev/null +++ b/modules/sd_vae_taesd.py @@ -0,0 +1,88 @@ +""" +Tiny AutoEncoder for Stable Diffusion +(DNN for encoding / decoding SD's latent space) + +https://github.com/madebyollin/taesd +""" +import os +import torch +import torch.nn as nn + +from modules import devices, paths_internal + +sd_vae_taesd = None + + +def conv(n_in, n_out, **kwargs): + return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs) + + +class Clamp(nn.Module): + @staticmethod + def forward(x): + return torch.tanh(x / 3) * 3 + + +class Block(nn.Module): + def __init__(self, n_in, n_out): + super().__init__() + self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) + self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() + self.fuse = nn.ReLU() + + def forward(self, x): + return self.fuse(self.conv(x) + self.skip(x)) + + +def decoder(): + return nn.Sequential( + Clamp(), conv(4, 64), nn.ReLU(), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), conv(64, 3), + ) + + +class TAESD(nn.Module): + latent_magnitude = 2 + latent_shift = 0.5 + + def __init__(self, decoder_path="taesd_decoder.pth"): + """Initialize pretrained TAESD on the given device from the given checkpoints.""" + super().__init__() + self.decoder = decoder() + self.decoder.load_state_dict( + torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) + + @staticmethod + def unscale_latents(x): + """[0, 1] -> raw latents""" + return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) + + +def download_model(model_path): + model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth' + + if not os.path.exists(model_path): + os.makedirs(os.path.dirname(model_path), exist_ok=True) + + print(f'Downloading TAESD decoder to: {model_path}') + torch.hub.download_url_to_file(model_url, model_path) + + +def model(): + global sd_vae_taesd + + if sd_vae_taesd is None: + model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth") + download_model(model_path) + + if os.path.exists(model_path): + sd_vae_taesd = TAESD(model_path) + sd_vae_taesd.eval() + sd_vae_taesd.to(devices.device, devices.dtype) + else: + raise FileNotFoundError('TAESD model not found') + + return sd_vae_taesd.decoder diff --git a/modules/shared.py b/modules/shared.py index 3abf71c00..165509eae 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -448,7 +448,7 @@ options_templates.update(options_section(('ui', "Live previews"), { "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}), "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"), - "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}).info("Full = slow but pretty; Approx NN = fast but low quality; Approx cheap = super fast but terrible otherwise"), + "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"), "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), }))