feat: support LyCORIS BOFT

This commit is contained in:
v0xie 2024-02-07 04:49:17 -08:00
parent 321b2db067
commit 9588721197

View File

@ -1,6 +1,6 @@
import torch
import network
from lyco_helpers import factorization
from lyco_helpers import factorization, butterfly_factor
from einops import rearrange
@ -36,6 +36,12 @@ class NetworkModuleOFT(network.NetworkModule):
# self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
self.is_boft = False
if "boft" in weights.w.keys():
self.is_boft = True
self.boft_b = weights.w["boft_b"]
self.boft_m = weights.w["boft_m"]
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
@ -68,14 +74,34 @@ class NetworkModuleOFT(network.NetworkModule):
R = oft_blocks.to(orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
if not self.is_boft:
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
else:
scale = 1.0
m = self.boft_m.to(device=oft_blocks.device, dtype=oft_blocks.dtype)
b = self.boft_b.to(device=oft_blocks.device, dtype=oft_blocks.dtype)
r_b = b // 2
inp = orig_weight
for i in range(m):
bi = R[i] # b_num, b_size, b_size
if i == 0:
# Apply multiplier/scale and rescale into first weight
bi = bi * scale + (1 - scale) * eye
#if self.rescaled:
# bi = bi * self.rescale
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
inp = rearrange(inp, "d b ... -> (d b) ...")
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
merged_weight = inp
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape