mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 14:55:09 +08:00
Move processing's models into models.py
It didn't make sense to have two differente files for the same and "models" is a more descriptive name.
This commit is contained in:
parent
e0ca4dfbc1
commit
866b36d705
@ -1,16 +1,11 @@
|
||||
from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
|
||||
import uvicorn
|
||||
from gradio import processing_utils
|
||||
from fastapi import APIRouter, HTTPException
|
||||
import modules.shared as shared
|
||||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.sd_samplers import all_samplers
|
||||
import modules.shared as shared
|
||||
import uvicorn
|
||||
from fastapi import APIRouter, HTTPException
|
||||
import json
|
||||
import io
|
||||
import base64
|
||||
from modules.api.models import *
|
||||
from PIL import Image
|
||||
from modules.extras import run_extras
|
||||
from gradio import processing_utils
|
||||
|
||||
def upscaler_to_index(name: str):
|
||||
try:
|
||||
@ -20,29 +15,6 @@ def upscaler_to_index(name: str):
|
||||
|
||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
||||
|
||||
# def img_to_base64(img: str):
|
||||
# buffer = io.BytesIO()
|
||||
# img.save(buffer, format="png")
|
||||
# return base64.b64encode(buffer.getvalue())
|
||||
|
||||
# def base64_to_bytes(base64Img: str):
|
||||
# if "," in base64Img:
|
||||
# base64Img = base64Img.split(",")[1]
|
||||
# return io.BytesIO(base64.b64decode(base64Img))
|
||||
|
||||
# def base64_to_images(base64Imgs: list[str]):
|
||||
# imgs = []
|
||||
# for img in base64Imgs:
|
||||
# img = Image.open(base64_to_bytes(img))
|
||||
# imgs.append(img)
|
||||
# return imgs
|
||||
|
||||
class ImageToImageResponse(BaseModel):
|
||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||
parameters: dict
|
||||
info: str
|
||||
|
||||
|
||||
class Api:
|
||||
def __init__(self, app, queue_lock):
|
||||
self.router = APIRouter()
|
||||
@ -51,15 +23,7 @@ class Api:
|
||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
||||
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
||||
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
||||
self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||
|
||||
# def __base64_to_image(self, base64_string):
|
||||
# # if has a comma, deal with prefix
|
||||
# if "," in base64_string:
|
||||
# base64_string = base64_string.split(",")[1]
|
||||
# imgdata = base64.b64decode(base64_string)
|
||||
# # convert base64 to PIL image
|
||||
# return Image.open(io.BytesIO(imgdata))
|
||||
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||
@ -81,7 +45,7 @@ class Api:
|
||||
|
||||
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
||||
|
||||
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.info)
|
||||
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.info)
|
||||
|
||||
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
||||
@ -120,10 +84,7 @@ class Api:
|
||||
processed = process_images(p)
|
||||
|
||||
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
||||
# for i in processed.images:
|
||||
# buffer = io.BytesIO()
|
||||
# i.save(buffer, format="png")
|
||||
# b64images.append(base64.b64encode(buffer.getvalue()))
|
||||
|
||||
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info)
|
||||
|
||||
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
||||
@ -134,12 +95,12 @@ class Api:
|
||||
reqDict.pop('upscaler_1')
|
||||
reqDict.pop('upscaler_2')
|
||||
|
||||
reqDict['image'] = processing_utils.decode_base64_to_file(reqDict['image'])
|
||||
reqDict['image'] = processing_utils.decode_base64_to_image(reqDict['image'])
|
||||
|
||||
with self.queue_lock:
|
||||
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="")
|
||||
|
||||
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0]), html_info_x=result[1], html_info=result[2])
|
||||
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2])
|
||||
|
||||
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
||||
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
||||
|
@ -1,10 +1,118 @@
|
||||
from pydantic import BaseModel, Field, Json
|
||||
import inspect
|
||||
from pydantic import BaseModel, Field, Json, create_model
|
||||
from typing import Any, Optional
|
||||
from typing_extensions import Literal
|
||||
from inflection import underscore
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||
from modules.shared import sd_upscalers
|
||||
|
||||
API_NOT_ALLOWED = [
|
||||
"self",
|
||||
"kwargs",
|
||||
"sd_model",
|
||||
"outpath_samples",
|
||||
"outpath_grids",
|
||||
"sampler_index",
|
||||
"do_not_save_samples",
|
||||
"do_not_save_grid",
|
||||
"extra_generation_params",
|
||||
"overlay_images",
|
||||
"do_not_reload_embeddings",
|
||||
"seed_enable_extras",
|
||||
"prompt_for_display",
|
||||
"sampler_noise_scheduler_override",
|
||||
"ddim_discretize"
|
||||
]
|
||||
|
||||
class ModelDef(BaseModel):
|
||||
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||||
|
||||
field: str
|
||||
field_alias: str
|
||||
field_type: Any
|
||||
field_value: Any
|
||||
|
||||
|
||||
class PydanticModelGenerator:
|
||||
"""
|
||||
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
||||
source_data is a snapshot of the default values produced by the class
|
||||
params are the names of the actual keys required by __init__
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = None,
|
||||
class_instance = None,
|
||||
additional_fields = None,
|
||||
):
|
||||
def field_type_generator(k, v):
|
||||
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||
# print(k, v.annotation, v.default)
|
||||
field_type = v.annotation
|
||||
|
||||
return Optional[field_type]
|
||||
|
||||
def merge_class_params(class_):
|
||||
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||
parameters = {}
|
||||
for classes in all_classes:
|
||||
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||
return parameters
|
||||
|
||||
|
||||
self._model_name = model_name
|
||||
self._class_data = merge_class_params(class_instance)
|
||||
self._model_def = [
|
||||
ModelDef(
|
||||
field=underscore(k),
|
||||
field_alias=k,
|
||||
field_type=field_type_generator(k, v),
|
||||
field_value=v.default
|
||||
)
|
||||
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||
]
|
||||
|
||||
for fields in additional_fields:
|
||||
self._model_def.append(ModelDef(
|
||||
field=underscore(fields["key"]),
|
||||
field_alias=fields["key"],
|
||||
field_type=fields["type"],
|
||||
field_value=fields["default"]))
|
||||
|
||||
def generate_model(self):
|
||||
"""
|
||||
Creates a pydantic BaseModel
|
||||
from the json and overrides provided at initialization
|
||||
"""
|
||||
fields = {
|
||||
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
||||
}
|
||||
DynamicModel = create_model(self._model_name, **fields)
|
||||
DynamicModel.__config__.allow_population_by_field_name = True
|
||||
DynamicModel.__config__.allow_mutation = True
|
||||
return DynamicModel
|
||||
|
||||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
StableDiffusionProcessingTxt2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||
).generate_model()
|
||||
|
||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingImg2Img",
|
||||
StableDiffusionProcessingImg2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}]
|
||||
).generate_model()
|
||||
|
||||
class TextToImageResponse(BaseModel):
|
||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||
parameters: str
|
||||
parameters: dict
|
||||
info: str
|
||||
|
||||
class ImageToImageResponse(BaseModel):
|
||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||
parameters: dict
|
||||
info: str
|
||||
|
||||
class ExtrasBaseRequest(BaseModel):
|
||||
|
@ -1,106 +0,0 @@
|
||||
from array import array
|
||||
from inflection import underscore
|
||||
from typing import Any, Dict, Optional
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||
import inspect
|
||||
|
||||
|
||||
API_NOT_ALLOWED = [
|
||||
"self",
|
||||
"kwargs",
|
||||
"sd_model",
|
||||
"outpath_samples",
|
||||
"outpath_grids",
|
||||
"sampler_index",
|
||||
"do_not_save_samples",
|
||||
"do_not_save_grid",
|
||||
"extra_generation_params",
|
||||
"overlay_images",
|
||||
"do_not_reload_embeddings",
|
||||
"seed_enable_extras",
|
||||
"prompt_for_display",
|
||||
"sampler_noise_scheduler_override",
|
||||
"ddim_discretize"
|
||||
]
|
||||
|
||||
class ModelDef(BaseModel):
|
||||
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||||
|
||||
field: str
|
||||
field_alias: str
|
||||
field_type: Any
|
||||
field_value: Any
|
||||
|
||||
|
||||
class PydanticModelGenerator:
|
||||
"""
|
||||
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
||||
source_data is a snapshot of the default values produced by the class
|
||||
params are the names of the actual keys required by __init__
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = None,
|
||||
class_instance = None,
|
||||
additional_fields = None,
|
||||
):
|
||||
def field_type_generator(k, v):
|
||||
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||
# print(k, v.annotation, v.default)
|
||||
field_type = v.annotation
|
||||
|
||||
return Optional[field_type]
|
||||
|
||||
def merge_class_params(class_):
|
||||
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||
parameters = {}
|
||||
for classes in all_classes:
|
||||
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||
return parameters
|
||||
|
||||
|
||||
self._model_name = model_name
|
||||
self._class_data = merge_class_params(class_instance)
|
||||
self._model_def = [
|
||||
ModelDef(
|
||||
field=underscore(k),
|
||||
field_alias=k,
|
||||
field_type=field_type_generator(k, v),
|
||||
field_value=v.default
|
||||
)
|
||||
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||
]
|
||||
|
||||
for fields in additional_fields:
|
||||
self._model_def.append(ModelDef(
|
||||
field=underscore(fields["key"]),
|
||||
field_alias=fields["key"],
|
||||
field_type=fields["type"],
|
||||
field_value=fields["default"]))
|
||||
|
||||
def generate_model(self):
|
||||
"""
|
||||
Creates a pydantic BaseModel
|
||||
from the json and overrides provided at initialization
|
||||
"""
|
||||
fields = {
|
||||
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
||||
}
|
||||
DynamicModel = create_model(self._model_name, **fields)
|
||||
DynamicModel.__config__.allow_population_by_field_name = True
|
||||
DynamicModel.__config__.allow_mutation = True
|
||||
return DynamicModel
|
||||
|
||||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
StableDiffusionProcessingTxt2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||
).generate_model()
|
||||
|
||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingImg2Img",
|
||||
StableDiffusionProcessingImg2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}]
|
||||
).generate_model()
|
Loading…
Reference in New Issue
Block a user