mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
Removing parts no longer needed to fix vram
This commit is contained in:
parent
1f50971fb8
commit
82380d9ac1
@ -1,7 +1,6 @@
|
||||
import contextlib
|
||||
|
||||
import torch
|
||||
import gc
|
||||
|
||||
from modules import errors
|
||||
|
||||
@ -20,8 +19,8 @@ def get_optimal_device():
|
||||
|
||||
return cpu
|
||||
|
||||
|
||||
def torch_gc():
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
@ -345,8 +345,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
if state.job_count == -1:
|
||||
state.job_count = p.n_iter
|
||||
|
||||
for n in range(p.n_iter):
|
||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
||||
for n in range(p.n_iter):
|
||||
if state.interrupted:
|
||||
break
|
||||
|
||||
@ -395,22 +394,19 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
import modules.safety as safety
|
||||
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
|
||||
|
||||
for i, x_sample in enumerate(x_samples_ddim):
|
||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
||||
for i, x_sample in enumerate(x_samples_ddim):
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
|
||||
if p.restore_faces:
|
||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
||||
if p.restore_faces:
|
||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
||||
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
x_sample = modules.face_restoration.restore_faces(x_sample)
|
||||
devices.torch_gc()
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
||||
image = Image.fromarray(x_sample)
|
||||
|
||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||
@ -438,13 +434,12 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
infotexts.append(infotext(n, i))
|
||||
output_images.append(image)
|
||||
|
||||
del x_samples_ddim
|
||||
del x_samples_ddim
|
||||
|
||||
devices.torch_gc()
|
||||
devices.torch_gc()
|
||||
|
||||
state.nextjob()
|
||||
state.nextjob()
|
||||
|
||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
||||
p.color_corrections = None
|
||||
|
||||
index_of_first_image = 0
|
||||
|
Loading…
Reference in New Issue
Block a user