From 735c9e8059384d4f640e5582413c30871f83eac5 Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Thu, 14 Dec 2023 01:38:32 +0800 Subject: [PATCH] Fix network_oft --- extensions-builtin/Lora/network_oft.py | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index 05c378118..44465f7aa 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -53,12 +53,17 @@ class NetworkModuleOFT(network.NetworkModule): self.constraint = None self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) - def calc_updown_kb(self, orig_weight, multiplier): + def calc_updown(self, orig_weight): + I = torch.eye(self.block_size, device=self.oft_blocks.device) oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix + if self.is_kohya: + block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix + norm_Q = torch.norm(block_Q.flatten()) + new_norm_Q = torch.clamp(norm_Q, max=self.constraint) + block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) + oft_blocks = torch.matmul(I + block_Q, (I - block_Q).float().inverse()) R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device) # This errors out for MultiheadAttention, might need to be handled up-stream merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) @@ -70,15 +75,10 @@ class NetworkModuleOFT(network.NetworkModule): merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight + print(torch.norm(updown)) output_shape = orig_weight.shape return self.finalize_updown(updown, orig_weight, output_shape) - def calc_updown(self, orig_weight): - # if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it - multiplier = self.multiplier() - return self.calc_updown_kb(orig_weight, multiplier) - - # override to remove the multiplier/scale factor; it's already multiplied in get_weight def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): if self.bias is not None: updown = updown.reshape(self.bias.shape) @@ -94,4 +94,5 @@ class NetworkModuleOFT(network.NetworkModule): if ex_bias is not None: ex_bias = ex_bias * self.multiplier() - return updown, ex_bias + # Ignore calc_scale, which is not used in OFT. + return updown * self.multiplier(), ex_bias