mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
Added utility functions related to processing masks.
This commit is contained in:
parent
c7a1ff8720
commit
609dea36ea
@ -776,3 +776,194 @@ def flatten(img, bgcolor):
|
||||
img = background
|
||||
|
||||
return img.convert('RGB')
|
||||
|
||||
|
||||
def weighted_histogram_filter(img, kernel, kernel_center, percentile_min=0.0, percentile_max=1.0, min_width=1.0):
|
||||
"""
|
||||
Generalization convolution filter capable of applying
|
||||
weighted mean, median, maximum, and minimum filters
|
||||
parametrically using an arbitrary kernel.
|
||||
|
||||
Args:
|
||||
img (nparray):
|
||||
The image, a 2-D array of floats, to which the filter is being applied.
|
||||
kernel (nparray):
|
||||
The kernel, a 2-D array of floats.
|
||||
kernel_center (nparray):
|
||||
The kernel center coordinate, a 1-D array with two elements.
|
||||
percentile_min (float):
|
||||
The lower bound of the histogram window used by the filter,
|
||||
from 0 to 1.
|
||||
percentile_max (float):
|
||||
The upper bound of the histogram window used by the filter,
|
||||
from 0 to 1.
|
||||
min_width (float):
|
||||
The minimum size of the histogram window bounds, in weight units.
|
||||
Must be greater than 0.
|
||||
|
||||
Returns:
|
||||
(nparray): A filtered copy of the input image "img", a 2-D array of floats.
|
||||
"""
|
||||
|
||||
# Converts an index tuple into a vector.
|
||||
def vec(x):
|
||||
return np.array(x)
|
||||
|
||||
kernel_min = -kernel_center
|
||||
kernel_max = vec(kernel.shape) - kernel_center
|
||||
|
||||
def weighted_histogram_filter_single(idx):
|
||||
idx = vec(idx)
|
||||
min_index = np.maximum(0, idx + kernel_min)
|
||||
max_index = np.minimum(vec(img.shape), idx + kernel_max)
|
||||
window_shape = max_index - min_index
|
||||
|
||||
class WeightedElement:
|
||||
"""
|
||||
An element of the histogram, its weight
|
||||
and bounds.
|
||||
"""
|
||||
def __init__(self, value, weight):
|
||||
self.value: float = value
|
||||
self.weight: float = weight
|
||||
self.window_min: float = 0.0
|
||||
self.window_max: float = 1.0
|
||||
|
||||
# Collect the values in the image as WeightedElements,
|
||||
# weighted by their corresponding kernel values.
|
||||
values = []
|
||||
for window_tup in np.ndindex(tuple(window_shape)):
|
||||
window_index = vec(window_tup)
|
||||
image_index = window_index + min_index
|
||||
centered_kernel_index = image_index - idx
|
||||
kernel_index = centered_kernel_index + kernel_center
|
||||
element = WeightedElement(img[tuple(image_index)], kernel[tuple(kernel_index)])
|
||||
values.append(element)
|
||||
|
||||
def sort_key(x: WeightedElement):
|
||||
return x.value
|
||||
|
||||
values.sort(key=sort_key)
|
||||
|
||||
# Calculate the height of the stack (sum)
|
||||
# and each sample's range they occupy in the stack
|
||||
sum = 0
|
||||
for i in range(len(values)):
|
||||
values[i].window_min = sum
|
||||
sum += values[i].weight
|
||||
values[i].window_max = sum
|
||||
|
||||
# Calculate what range of this stack ("window")
|
||||
# we want to get the weighted average across.
|
||||
window_min = sum * percentile_min
|
||||
window_max = sum * percentile_max
|
||||
window_width = window_max - window_min
|
||||
|
||||
# Ensure the window is within the stack and at least a certain size.
|
||||
if window_width < min_width:
|
||||
window_center = (window_min + window_max) / 2
|
||||
window_min = window_center - min_width / 2
|
||||
window_max = window_center + min_width / 2
|
||||
|
||||
if window_max > sum:
|
||||
window_max = sum
|
||||
window_min = sum - min_width
|
||||
|
||||
if window_min < 0:
|
||||
window_min = 0
|
||||
window_max = min_width
|
||||
|
||||
value = 0
|
||||
value_weight = 0
|
||||
|
||||
# Get the weighted average of all the samples
|
||||
# that overlap with the window, weighted
|
||||
# by the size of their overlap.
|
||||
for i in range(len(values)):
|
||||
if window_min >= values[i].window_max:
|
||||
continue
|
||||
if window_max <= values[i].window_min:
|
||||
break
|
||||
|
||||
s = max(window_min, values[i].window_min)
|
||||
e = min(window_max, values[i].window_max)
|
||||
w = e - s
|
||||
|
||||
value += values[i].value * w
|
||||
value_weight += w
|
||||
|
||||
return value / value_weight if value_weight != 0 else 0
|
||||
|
||||
img_out = img.copy()
|
||||
|
||||
# Apply the kernel operation over each pixel.
|
||||
for index in np.ndindex(img.shape):
|
||||
img_out[index] = weighted_histogram_filter_single(index)
|
||||
|
||||
return img_out
|
||||
|
||||
def smoothstep(x):
|
||||
"""
|
||||
The smoothstep function, input should be clamped to 0-1 range.
|
||||
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
|
||||
"""
|
||||
return x * x * (3 - 2 * x)
|
||||
|
||||
def smootherstep(x):
|
||||
"""
|
||||
The smootherstep function, input should be clamped to 0-1 range.
|
||||
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
|
||||
"""
|
||||
return x * x * x * (x * (6 * x - 15) + 10)
|
||||
|
||||
|
||||
def get_gaussian_kernel(stddev_radius=1.0, max_radius=2):
|
||||
"""
|
||||
Creates a Gaussian kernel with thresholded edges.
|
||||
|
||||
Args:
|
||||
stddev_radius (float):
|
||||
Standard deviation of the gaussian kernel, in pixels.
|
||||
max_radius (int):
|
||||
The size of the filter kernel. The number of pixels is (max_radius*2+1) ** 2.
|
||||
The kernel is thresholded so that any values one pixel beyond this radius
|
||||
is weighted at 0.
|
||||
|
||||
Returns:
|
||||
(nparray, nparray): A kernel array (shape: (N, N)), its center coordinate (shape: (2))
|
||||
"""
|
||||
# Evaluates a 0-1 normalized gaussian function for a given square distance from the mean.
|
||||
def gaussian(sqr_mag):
|
||||
return math.exp(-sqr_mag / (stddev_radius * stddev_radius))
|
||||
|
||||
# Helper function for converting a tuple to an array.
|
||||
def vec(x):
|
||||
return np.array(x)
|
||||
|
||||
"""
|
||||
Since a gaussian is unbounded, we need to limit ourselves
|
||||
to a finite range.
|
||||
We taper the ends off at the end of that range so they equal zero
|
||||
while preserving the maximum value of 1 at the mean.
|
||||
"""
|
||||
zero_radius = max_radius + 1.0
|
||||
gauss_zero = gaussian(zero_radius * zero_radius)
|
||||
gauss_kernel_scale = 1 / (1 - gauss_zero)
|
||||
|
||||
def gaussian_kernel_func(coordinate):
|
||||
x = coordinate[0] ** 2.0 + coordinate[1] ** 2.0
|
||||
x = gaussian(x)
|
||||
x -= gauss_zero
|
||||
x /= gauss_kernel_scale
|
||||
x = max(0.0, x)
|
||||
return x
|
||||
|
||||
size = max_radius * 2 + 1
|
||||
kernel_center = max_radius
|
||||
kernel = np.zeros((size, size))
|
||||
|
||||
for index in np.ndindex(kernel.shape):
|
||||
kernel[index] = gaussian_kernel_func(vec(index) - kernel_center)
|
||||
|
||||
return kernel, kernel_center
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user