mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-15 07:20:31 +08:00
refactor: remove used OFT functions
This commit is contained in:
parent
de8ee92ed8
commit
4a50c9638c
@ -29,98 +29,36 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||||||
self.block_size = self.out_dim // self.num_blocks
|
self.block_size = self.out_dim // self.num_blocks
|
||||||
|
|
||||||
self.org_module: list[torch.Module] = [self.sd_module]
|
self.org_module: list[torch.Module] = [self.sd_module]
|
||||||
#self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True)
|
|
||||||
|
|
||||||
init_multiplier = self.multiplier() * self.calc_scale()
|
def merge_weight(self, R_weight, org_weight):
|
||||||
self.last_multiplier = init_multiplier
|
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
||||||
|
|
||||||
self.R = self.get_weight(self.oft_blocks, init_multiplier)
|
|
||||||
|
|
||||||
self.hooks = []
|
|
||||||
self.merged_weight = self.merge_weight()
|
|
||||||
|
|
||||||
#self.apply_to()
|
|
||||||
self.applied = False
|
|
||||||
self.merged = False
|
|
||||||
|
|
||||||
def merge_weight(self):
|
|
||||||
org_weight = self.org_module[0].weight
|
|
||||||
R = self.R.to(org_weight.device, dtype=org_weight.dtype)
|
|
||||||
if org_weight.dim() == 4:
|
if org_weight.dim() == 4:
|
||||||
weight = torch.einsum("oihw, op -> pihw", org_weight, R)
|
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
||||||
else:
|
else:
|
||||||
weight = torch.einsum("oi, op -> pi", org_weight, R)
|
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
||||||
return weight
|
return weight
|
||||||
|
|
||||||
def replace_weight(self, new_weight):
|
|
||||||
org_sd = self.org_module[0].state_dict()
|
|
||||||
org_sd['weight'] = new_weight
|
|
||||||
self.org_module[0].load_state_dict(org_sd)
|
|
||||||
self.merged = True
|
|
||||||
|
|
||||||
def restore_weight(self):
|
|
||||||
pass
|
|
||||||
#org_sd = self.org_module[0].state_dict()
|
|
||||||
#org_sd['weight'] = self.org_weight
|
|
||||||
#self.org_module[0].load_state_dict(org_sd)
|
|
||||||
#self.merged = False
|
|
||||||
|
|
||||||
# FIXME: hook forward method of original linear, but how do we undo the hook when we are done?
|
|
||||||
def apply_to(self):
|
|
||||||
if not self.applied:
|
|
||||||
self.org_forward = self.org_module[0].forward
|
|
||||||
#self.org_module[0].forward = self.forward
|
|
||||||
prehook = self.org_module[0].register_forward_pre_hook(self.pre_forward_hook)
|
|
||||||
hook = self.org_module[0].register_forward_hook(self.forward_hook)
|
|
||||||
self.hooks.append(prehook)
|
|
||||||
self.hooks.append(hook)
|
|
||||||
self.applied = True
|
|
||||||
|
|
||||||
def remove_from(self):
|
|
||||||
if self.applied:
|
|
||||||
for hook in self.hooks:
|
|
||||||
hook.remove()
|
|
||||||
self.hooks = []
|
|
||||||
self.applied = False
|
|
||||||
|
|
||||||
def get_weight(self, oft_blocks, multiplier=None):
|
def get_weight(self, oft_blocks, multiplier=None):
|
||||||
multiplier = multiplier.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
|
||||||
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
||||||
|
|
||||||
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
||||||
norm_Q = torch.norm(block_Q.flatten())
|
norm_Q = torch.norm(block_Q.flatten())
|
||||||
new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
||||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||||
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||||
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
||||||
|
|
||||||
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
||||||
R = torch.block_diag(*block_R_weighted)
|
R = torch.block_diag(*block_R_weighted)
|
||||||
|
|
||||||
return R
|
return R
|
||||||
|
|
||||||
def calc_updown(self, orig_weight):
|
def calc_updown(self, orig_weight):
|
||||||
if not self.applied:
|
R = self.get_weight(self.oft_blocks, self.multiplier())
|
||||||
self.apply_to()
|
merged_weight = self.merge_weight(R, orig_weight)
|
||||||
|
|
||||||
self.merged_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||||
|
|
||||||
updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype)
|
|
||||||
output_shape = orig_weight.shape
|
output_shape = orig_weight.shape
|
||||||
orig_weight = self.merged_weight
|
orig_weight = orig_weight
|
||||||
#output_shape = self.oft_blocks.shape
|
|
||||||
|
|
||||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||||
|
|
||||||
def pre_forward_hook(self, module, input):
|
|
||||||
#if not self.applied:
|
|
||||||
# self.apply_to()
|
|
||||||
|
|
||||||
multiplier = self.multiplier() * self.calc_scale()
|
|
||||||
|
|
||||||
if not multiplier==self.last_multiplier or not self.merged:
|
|
||||||
self.R = self.get_weight(self.oft_blocks, multiplier)
|
|
||||||
self.last_multiplier = multiplier
|
|
||||||
self.merged_weight = self.merge_weight()
|
|
||||||
self.replace_weight(self.merged_weight)
|
|
||||||
|
|
||||||
def forward_hook(self, module, args, output):
|
|
||||||
pass
|
|
Loading…
Reference in New Issue
Block a user