diff --git a/modules/processing.py b/modules/processing.py index abbfdf98d..0246f5dd6 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -506,13 +506,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): firstphase_width_truncated = 0 firstphase_height_truncated = 0 - def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, first_pass_width=512, first_pass_height=512, **kwargs): + def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, firstphase_width=512, firstphase_height=512, crop_scale=False, **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.scale_latent = scale_latent self.denoising_strength = denoising_strength - self.first_pass_width = first_pass_width - self.first_pass_height = first_pass_height + self.firstphase_width = firstphase_width + self.firstphase_height = firstphase_height + self.crop_scale = crop_scale def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: @@ -521,14 +522,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: state.job_count = state.job_count * 2 - desired_pixel_count = self.first_pass_width * self.first_pass_height - actual_pixel_count = self.width * self.height - scale = math.sqrt(desired_pixel_count / actual_pixel_count) + #desired_pixel_count = self.firstphase_width * self.firstphase_height + #actual_pixel_count = self.width * self.height + #scale = math.sqrt(desired_pixel_count / actual_pixel_count) - self.firstphase_width = math.ceil(scale * self.width / 64) * 64 - self.firstphase_height = math.ceil(scale * self.height / 64) * 64 - self.firstphase_width_truncated = int(scale * self.width) - self.firstphase_height_truncated = int(scale * self.height) + #self.firstphase_width = math.ceil(scale * self.width / 64) * 64 + #self.firstphase_height = math.ceil(scale * self.height / 64) * 64 + #self.firstphase_width_truncated = int(scale * self.width) + #self.firstphase_height_truncated = int(scale * self.height) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) @@ -541,8 +542,17 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) - truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f - truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f + truncate_x = 0 + truncate_y = 0 + + if self.crop_scale: + if self.width/self.firstphase_width > self.height/self.firstphase_height: + #Crop to landscape + truncate_y = (self.width - self.firstphase_width)//2 // opt_f + + elif self.width/self.firstphase_width < self.height/self.firstphase_height: + #Crop to portrait + truncate_x = (self.height - self.firstphase_height)//2 // opt_f samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2] diff --git a/modules/txt2img.py b/modules/txt2img.py index 85cbece4d..447ec3d3f 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -6,7 +6,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, first_pass_width: int, first_pass_height: int, *args): +def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, crop_scale: bool, *args): p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -32,8 +32,9 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: enable_hr=enable_hr, scale_latent=scale_latent if enable_hr else None, denoising_strength=denoising_strength if enable_hr else None, - first_pass_width=first_pass_width if enable_hr else None, - first_pass_height=first_pass_height if enable_hr else None, + firstphase_width=firstphase_width if enable_hr else None, + firstphase_height=firstphase_height if enable_hr else None, + crop_scale=crop_scale if enable_hr else None, ) diff --git a/modules/ui.py b/modules/ui.py index 544419b25..f2d81f687 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -540,12 +540,18 @@ def create_ui(wrap_gradio_gpu_call): enable_hr = gr.Checkbox(label='Highres. fix', value=False) with gr.Row(visible=False) as hr_options: - first_pass_width = gr.Slider(minimum=64, maximum=1024, step=64, label="First pass width", value=512) - first_pass_height = gr.Slider(minimum=64, maximum=1024, step=64, label="First pass height", value=512) - scale_latent = gr.Checkbox(label='Scale latent', value=False) - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7) + with gr.Column(scale=1.0): + firstphase_width = gr.Slider(minimum=64, maximum=1024, step=64, label="First pass width", value=512) + firstphase_height = gr.Slider(minimum=64, maximum=1024, step=64, label="First pass height", value=512) + + with gr.Column(scale=1.0): + with gr.Row(): + crop_scale = gr.Checkbox(label='Crop when scaling', value=False) + scale_latent = gr.Checkbox(label='Scale latent', value=False) + with gr.Row(): + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7) - with gr.Row(): + with gr.Row(equal_height=True): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) @@ -606,8 +612,9 @@ def create_ui(wrap_gradio_gpu_call): enable_hr, scale_latent, denoising_strength, - first_pass_width, - first_pass_height, + firstphase_width, + firstphase_height, + crop_scale, ] + custom_inputs, outputs=[ txt2img_gallery, @@ -672,8 +679,8 @@ def create_ui(wrap_gradio_gpu_call): (denoising_strength, "Denoising strength"), (enable_hr, lambda d: "Denoising strength" in d), (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), - (first_pass_width, "First pass width"), - (first_pass_height, "First pass height"), + (firstphase_width, "First pass width"), + (firstphase_height, "First pass height"), ] modules.generation_parameters_copypaste.connect_paste(paste, txt2img_paste_fields, txt2img_prompt) token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])