mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-15 07:20:31 +08:00
first
This commit is contained in:
parent
71cf18b012
commit
3324f31e84
60
README.md
60
README.md
@ -1,2 +1,58 @@
|
||||
# stable-diffusion-webui
|
||||
Stable Diffusion web UI
|
||||
# Stable Diffusion web UI
|
||||
A browser interface based on Gradio library for Stable Diffusion.
|
||||
|
||||
Original script with Gradio UI was written by a kind anonymopus user. This is a modification.
|
||||
|
||||
![](screenshot.png)
|
||||
|
||||
## Stable Diffusion
|
||||
|
||||
This script assumes that you already have main Stable Diffusion sutff installed, assumed to be in directory `/sd`.
|
||||
If you don't have it installed, follow the guide:
|
||||
|
||||
- https://rentry.org/kretard
|
||||
|
||||
This repository's `webgui.py` is a replacement for `kdiff.py` from the guide.
|
||||
|
||||
Particularly, following files must exist:
|
||||
|
||||
- `/sd/configs/stable-diffusion/v1-inference.yaml`
|
||||
- `/sd/models/ldm/stable-diffusion-v1/model.ckpt`
|
||||
- `/sd/ldm/util.py`
|
||||
- `/sd/k_diffusion/__init__.py`
|
||||
|
||||
## GFPGAN
|
||||
|
||||
If you want to use GFPGAN to improve generated faces, you need to install it separately.
|
||||
Follow instructions from https://github.com/TencentARC/GFPGAN, but when cloning it, do so into Stable Diffusion main directory, `/sd`.
|
||||
After that download [GFPGANv1.3.pth](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth) and put it
|
||||
into the `/sd/GFPGAN/experiments/pretrained_models` directory. If you're getting troubles with GFPGAN support, follow instructions
|
||||
from the GFPGAN's repository until `inference_gfpgan.py` script works.
|
||||
|
||||
The following files must exist:
|
||||
|
||||
- `/sd/GFPGAN/inference_gfpgan.py`
|
||||
- `/sd/GFPGAN/experiments/pretrained_models/GFPGANv1.3.pth`
|
||||
|
||||
If the GFPGAN directory does not exist, you will not get the option to use GFPGAN in the UI. If it does exist, you will either be able
|
||||
to use it, or there will be a message in console with an error related to GFPGAN.
|
||||
|
||||
## Web UI
|
||||
|
||||
Run the script as:
|
||||
|
||||
`python webui.py`
|
||||
|
||||
When running the script, you must be in the main Stable Diffusion directory, `/sd`. If you cloned this repository into a subdirectory
|
||||
of `/sd`, say, the `stable-diffusion-webui` directory, you will run it as:
|
||||
|
||||
`python stable-diffusion-webui/webui.py`
|
||||
|
||||
When launching, you may get a very long warning message related to some weights not being used. You may freely ignore it.
|
||||
After a while, you will get a message like this:
|
||||
|
||||
```
|
||||
Running on local URL: http://127.0.0.1:7860/
|
||||
```
|
||||
|
||||
Open the URL in browser, and you are good to go.
|
||||
|
BIN
screenshot.png
Normal file
BIN
screenshot.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 865 KiB |
404
webui.py
Normal file
404
webui.py
Normal file
@ -0,0 +1,404 @@
|
||||
import PIL
|
||||
import argparse, os, sys, glob
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import gradio as gr
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from itertools import islice
|
||||
from einops import rearrange, repeat
|
||||
from torchvision.utils import make_grid
|
||||
from torch import autocast
|
||||
from contextlib import contextmanager, nullcontext
|
||||
import mimetypes
|
||||
import random
|
||||
|
||||
import k_diffusion as K
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
|
||||
mimetypes.init()
|
||||
mimetypes.add_type('application/javascript', '.js')
|
||||
|
||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||
opt_C = 4
|
||||
opt_f = 8
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default=None)
|
||||
parser.add_argument("--skip_grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",)
|
||||
parser.add_argument("--skip_save", action='store_true', help="do not save indiviual samples. For speed measurements.",)
|
||||
parser.add_argument("--n_rows", type=int, default=0, help="rows in the grid (default: n_samples)",)
|
||||
parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",)
|
||||
parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",)
|
||||
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
||||
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default='./GFPGAN')
|
||||
opt = parser.parse_args()
|
||||
|
||||
GFPGAN_dir = opt.gfpgan_dir
|
||||
|
||||
|
||||
def chunk(it, size):
|
||||
it = iter(it)
|
||||
return iter(lambda: tuple(islice(it, size)), ())
|
||||
|
||||
|
||||
def load_model_from_config(config, ckpt, verbose=False):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
print(m)
|
||||
if len(u) > 0 and verbose:
|
||||
print("unexpected keys:")
|
||||
print(u)
|
||||
|
||||
model.cuda()
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def load_img_pil(img_pil):
|
||||
image = img_pil.convert("RGB")
|
||||
w, h = image.size
|
||||
print(f"loaded input image of size ({w}, {h})")
|
||||
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
||||
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
||||
print(f"cropped image to size ({w}, {h})")
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
return 2. * image - 1.
|
||||
|
||||
|
||||
def load_img(path):
|
||||
return load_img_pil(Image.open(path))
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
def load_GFPGAN():
|
||||
model_name = 'GFPGANv1.3'
|
||||
model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
|
||||
if not os.path.isfile(model_path):
|
||||
raise Exception("GFPGAN model not found at path "+model_path)
|
||||
|
||||
sys.path.append(os.path.abspath(GFPGAN_dir))
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||
|
||||
|
||||
GFPGAN = None
|
||||
if os.path.exists(GFPGAN_dir):
|
||||
try:
|
||||
GFPGAN = load_GFPGAN()
|
||||
print("Loaded GFPGAN")
|
||||
except Exception:
|
||||
import traceback
|
||||
print("Error loading GFPGAN:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
config = OmegaConf.load("configs/stable-diffusion/v1-inference.yaml")
|
||||
model = load_model_from_config(config, "models/ldm/stable-diffusion-v1/model.ckpt")
|
||||
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = model.half().to(device)
|
||||
|
||||
|
||||
def image_grid(imgs, rows):
|
||||
cols = len(imgs) // rows
|
||||
|
||||
w, h = imgs[0].size
|
||||
grid = Image.new('RGB', size=(cols * w, rows * h))
|
||||
|
||||
for i, img in enumerate(imgs):
|
||||
grid.paste(img, box=(i % cols * w, i // cols * h))
|
||||
|
||||
return grid
|
||||
|
||||
def dream(prompt: str, ddim_steps: int, sampler_name: str, fixed_code: bool, use_GFPGAN: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, seed: int, height: int, width: int):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
outpath = opt.outdir or "outputs/txt2img-samples"
|
||||
|
||||
if seed == -1:
|
||||
seed = random.randrange(4294967294)
|
||||
|
||||
seed = int(seed)
|
||||
|
||||
is_PLMS = sampler_name == 'PLMS'
|
||||
is_DDIM = sampler_name == 'DDIM'
|
||||
is_Kdif = sampler_name == 'k-diffusion'
|
||||
|
||||
sampler = None
|
||||
if is_PLMS:
|
||||
sampler = PLMSSampler(model)
|
||||
elif is_DDIM:
|
||||
sampler = DDIMSampler(model)
|
||||
elif is_Kdif:
|
||||
pass
|
||||
else:
|
||||
raise Exception("Unknown sampler: " + sampler_name)
|
||||
|
||||
model_wrap = K.external.CompVisDenoiser(model)
|
||||
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
|
||||
batch_size = n_samples
|
||||
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
||||
|
||||
assert prompt is not None
|
||||
data = [batch_size * [prompt]]
|
||||
|
||||
sample_path = os.path.join(outpath, "samples")
|
||||
os.makedirs(sample_path, exist_ok=True)
|
||||
base_count = len(os.listdir(sample_path))
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
|
||||
start_code = None
|
||||
if fixed_code:
|
||||
start_code = torch.randn([n_samples, opt_C, height // opt_f, width // opt_f], device=device)
|
||||
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
output_images = []
|
||||
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
|
||||
all_samples = []
|
||||
|
||||
for n in range(n_iter):
|
||||
for batch_index, prompts in enumerate(data):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
shape = [opt_C, height // opt_f, width // opt_f]
|
||||
|
||||
current_seed = seed + n * len(data) + batch_index
|
||||
torch.manual_seed(current_seed)
|
||||
|
||||
if is_Kdif:
|
||||
sigmas = model_wrap.get_sigmas(ddim_steps)
|
||||
x = torch.randn([n_samples, *shape], device=device) * sigmas[0] # for GPU draw
|
||||
model_wrap_cfg = CFGDenoiser(model_wrap)
|
||||
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args={'cond': c, 'uncond': uc, 'cond_scale': cfg_scale}, disable=False)
|
||||
|
||||
elif sampler is not None:
|
||||
samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, eta=ddim_eta, x_T=start_code)
|
||||
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if not opt.skip_save or not opt.skip_grid:
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
|
||||
if use_GFPGAN and GFPGAN is not None:
|
||||
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
x_sample = restored_img
|
||||
|
||||
image = Image.fromarray(x_sample)
|
||||
|
||||
image.save(os.path.join(sample_path, f"{base_count:05}-{current_seed}_{prompt.replace(' ', '_')[:128]}.png"))
|
||||
output_images.append(image)
|
||||
base_count += 1
|
||||
|
||||
if not opt.skip_grid:
|
||||
all_samples.append(x_sample)
|
||||
|
||||
if not opt.skip_grid:
|
||||
# additionally, save as grid
|
||||
grid = image_grid(output_images, rows=n_rows)
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
grid_count += 1
|
||||
|
||||
|
||||
if sampler is not None:
|
||||
del sampler
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {ddim_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||
""".strip()
|
||||
|
||||
return output_images, seed, info
|
||||
|
||||
|
||||
dream_interface = gr.Interface(
|
||||
dream,
|
||||
inputs=[
|
||||
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
|
||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||
gr.Radio(label='Sampling method', choices=["DDIM", "PLMS", "k-diffusion"], value="k-diffusion"),
|
||||
gr.Checkbox(label='Enable Fixed Code sampling', value=False),
|
||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||
gr.Slider(minimum=1, maximum=16, step=1, label='Sampling iterations', value=1),
|
||||
gr.Slider(minimum=1, maximum=4, step=1, label='Samples per iteration', value=1),
|
||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale', value=7.0),
|
||||
gr.Number(label='Seed', value=-1),
|
||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
|
||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512),
|
||||
],
|
||||
outputs=[
|
||||
gr.Gallery(label="Images"),
|
||||
gr.Number(label='Seed'),
|
||||
gr.Textbox(label="Copy-paste generation parameters"),
|
||||
],
|
||||
title="Stable Diffusion Text-to-Image K",
|
||||
description="Generate images from text with Stable Diffusion (using K-LMS)",
|
||||
allow_flagging="never"
|
||||
)
|
||||
|
||||
|
||||
def translation(prompt: str, init_img, ddim_steps: int, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
outpath = opt.outdir or "outputs/img2img-samples"
|
||||
|
||||
if seed == -1:
|
||||
seed = random.randrange(4294967294)
|
||||
|
||||
sampler = DDIMSampler(model)
|
||||
|
||||
model_wrap = K.external.CompVisDenoiser(model)
|
||||
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
|
||||
batch_size = n_samples
|
||||
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
||||
|
||||
assert prompt is not None
|
||||
data = [batch_size * [prompt]]
|
||||
|
||||
sample_path = os.path.join(outpath, "samples")
|
||||
os.makedirs(sample_path, exist_ok=True)
|
||||
base_count = len(os.listdir(sample_path))
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
seedit = 0
|
||||
|
||||
image = init_img.convert("RGB")
|
||||
w, h = image.size
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
|
||||
output_images = []
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
init_image = 2. * image - 1.
|
||||
init_image = init_image.to(device)
|
||||
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
||||
x0 = init_latent
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False)
|
||||
|
||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
t_enc = int(denoising_strength * ddim_steps)
|
||||
print(f"target t_enc is {t_enc} steps")
|
||||
with model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in range(n_iter):
|
||||
for batch_index, prompts in enumerate(data):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
|
||||
sigmas = model_wrap.get_sigmas(ddim_steps)
|
||||
|
||||
current_seed = seed + n * len(data) + batch_index
|
||||
torch.manual_seed(current_seed)
|
||||
|
||||
noise = torch.randn_like(x0) * sigmas[ddim_steps - t_enc - 1] # for GPU draw
|
||||
xi = x0 + noise
|
||||
sigma_sched = sigmas[ddim_steps - t_enc - 1:]
|
||||
# x = torch.randn([n_samples, *shape]).to(device) * sigmas[0] # for CPU draw
|
||||
model_wrap_cfg = CFGDenoiser(model_wrap)
|
||||
extra_args = {'cond': c, 'uncond': uc, 'cond_scale': cfg_scale}
|
||||
|
||||
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args=extra_args, disable=False)
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if not opt.skip_save:
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
image.save(os.path.join(sample_path, f"{base_count:05}-{current_seed}_{prompt.replace(' ', '_')[:128]}.png"))
|
||||
output_images.append(image)
|
||||
base_count += 1
|
||||
seedit += 1
|
||||
|
||||
if not opt.skip_grid:
|
||||
all_samples.append(x_samples_ddim)
|
||||
|
||||
if not opt.skip_grid:
|
||||
# additionally, save as grid
|
||||
grid = torch.stack(all_samples, 0)
|
||||
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||
grid = make_grid(grid, nrow=n_rows)
|
||||
|
||||
# to image
|
||||
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
Image.fromarray(grid.astype(np.uint8))
|
||||
grid_count += 1
|
||||
|
||||
del sampler
|
||||
return output_images, seed
|
||||
|
||||
|
||||
# prompt, init_img, ddim_steps, plms, ddim_eta, n_iter, n_samples, cfg_scale, denoising_strength, seed
|
||||
|
||||
img2img_interface = gr.Interface(
|
||||
translation,
|
||||
inputs=[
|
||||
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
||||
gr.Image(value="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg", source="upload", interactive=True, type="pil"),
|
||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||
gr.Slider(minimum=1, maximum=50, step=1, label='Sampling iterations', value=2),
|
||||
gr.Slider(minimum=1, maximum=8, step=1, label='Samples per iteration', value=2),
|
||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale', value=7.0),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
|
||||
gr.Number(label='Seed', value=-1),
|
||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Resize Height", value=512),
|
||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Resize Width", value=512),
|
||||
],
|
||||
outputs=[
|
||||
gr.Gallery(),
|
||||
gr.Number(label='Seed')
|
||||
],
|
||||
title="Stable Diffusion Image-to-Image",
|
||||
description="Generate images from images with Stable Diffusion",
|
||||
)
|
||||
|
||||
demo = gr.TabbedInterface(interface_list=[dream_interface, img2img_interface], tab_names=["Dream", "Image Translation"])
|
||||
|
||||
demo.launch()
|
Loading…
Reference in New Issue
Block a user