improve efficiency and support more device

This commit is contained in:
Kohaku-Blueleaf 2024-01-09 22:11:44 +08:00
parent 6869d95890
commit 209c26a1cb
2 changed files with 44 additions and 17 deletions

View File

@ -110,6 +110,7 @@ device_codeformer: torch.device = None
dtype: torch.dtype = torch.float16
dtype_vae: torch.dtype = torch.float16
dtype_unet: torch.dtype = torch.float16
dtype_inference: torch.dtype = torch.float16
unet_needs_upcast = False
@ -131,21 +132,49 @@ patch_module_list = [
]
def manual_cast_forward(self, *args, **kwargs):
org_dtype = torch_utils.get_param(self).dtype
self.to(dtype)
args = [arg.to(dtype) if isinstance(arg, torch.Tensor) else arg for arg in args]
kwargs = {k: v.to(dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
result = self.org_forward(*args, **kwargs)
self.to(org_dtype)
return result
def manual_cast_forward(target_dtype):
def forward_wrapper(self, *args, **kwargs):
org_dtype = torch_utils.get_param(self).dtype
if not target_dtype == org_dtype == dtype_inference:
self.to(target_dtype)
args = [
arg.to(target_dtype)
if isinstance(arg, torch.Tensor)
else arg
for arg in args
]
kwargs = {
k: v.to(target_dtype)
if isinstance(v, torch.Tensor)
else v
for k, v in kwargs.items()
}
result = self.org_forward(*args, **kwargs)
self.to(org_dtype)
if target_dtype != dtype_inference:
if isinstance(result, tuple):
result = tuple(
i.to(dtype_inference)
if isinstance(i, torch.Tensor)
else i
for i in result
)
elif isinstance(result, torch.Tensor):
result = result.to(dtype_inference)
return result
return forward_wrapper
@contextlib.contextmanager
def manual_cast():
def manual_cast(target_dtype):
for module_type in patch_module_list:
org_forward = module_type.forward
module_type.forward = manual_cast_forward
if module_type == torch.nn.MultiheadAttention and has_xpu():
module_type.forward = manual_cast_forward(torch.float32)
else:
module_type.forward = manual_cast_forward(target_dtype)
module_type.org_forward = org_forward
try:
yield None
@ -161,15 +190,12 @@ def autocast(disable=False):
if fp8 and device==cpu:
return torch.autocast("cpu", dtype=torch.bfloat16, enabled=True)
if fp8 and (dtype == torch.float32 or shared.cmd_opts.precision == "full" or cuda_no_autocast()):
return manual_cast()
if has_mps() and shared.cmd_opts.precision != "full":
return manual_cast()
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
if dtype == torch.float32 and shared.cmd_opts.precision == "full":
return contextlib.nullcontext()
if has_xpu() or has_mps() or cuda_no_autocast():
return manual_cast(dtype_inference)
return torch.autocast("cuda")

View File

@ -29,6 +29,7 @@ def initialize():
devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
devices.dtype_inference = torch.float32 if cmd_opts.precision == 'full' else devices.dtype
shared.device = devices.device
shared.weight_load_location = None if cmd_opts.lowram else "cpu"