mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 14:55:09 +08:00
Rework MPS randn fix, add randn_like fix
torch.manual_seed() already sets a CPU generator, so there is no reason to create a CPU generator manually. torch.randn_like also needs a MPS fix for k-diffusion, but a torch hijack with randn_like already exists so it can also be used for that.
This commit is contained in:
parent
4d5f1691dd
commit
0fddb4a1c0
@ -66,24 +66,15 @@ dtype_vae = torch.float16
|
||||
|
||||
|
||||
def randn(seed, shape):
|
||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
||||
if device.type == 'mps':
|
||||
generator = torch.Generator(device=cpu)
|
||||
generator.manual_seed(seed)
|
||||
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
||||
return noise
|
||||
|
||||
torch.manual_seed(seed)
|
||||
if device.type == 'mps':
|
||||
return torch.randn(shape, device=cpu).to(device)
|
||||
return torch.randn(shape, device=device)
|
||||
|
||||
|
||||
def randn_without_seed(shape):
|
||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
||||
if device.type == 'mps':
|
||||
generator = torch.Generator(device=cpu)
|
||||
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
||||
return noise
|
||||
|
||||
return torch.randn(shape, device=cpu).to(device)
|
||||
return torch.randn(shape, device=device)
|
||||
|
||||
|
||||
|
@ -365,7 +365,10 @@ class TorchHijack:
|
||||
if noise.shape == x.shape:
|
||||
return noise
|
||||
|
||||
return torch.randn_like(x)
|
||||
if x.device.type == 'mps':
|
||||
return torch.randn_like(x, device=devices.cpu).to(x.device)
|
||||
else:
|
||||
return torch.randn_like(x)
|
||||
|
||||
|
||||
# MPS fix for randn in torchsde
|
||||
@ -429,8 +432,7 @@ class KDiffusionSampler:
|
||||
self.model_wrap.step = 0
|
||||
self.eta = p.eta or opts.eta_ancestral
|
||||
|
||||
if self.sampler_noises is not None:
|
||||
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises)
|
||||
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
|
||||
|
||||
extra_params_kwargs = {}
|
||||
for param_name in self.extra_params:
|
||||
|
Loading…
Reference in New Issue
Block a user