mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-21 03:11:40 +08:00
change formatting to match the main program in devices.py
This commit is contained in:
parent
c62d17aee3
commit
0ab0a50f9a
@ -3,23 +3,27 @@ import contextlib
|
||||
import torch
|
||||
from modules import errors
|
||||
|
||||
|
||||
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
||||
# check `getattr` and try it for compatibility
|
||||
def has_mps() -> bool:
|
||||
if not getattr(torch, 'has_mps', False): return False
|
||||
if not getattr(torch, 'has_mps', False):
|
||||
return False
|
||||
try:
|
||||
torch.zeros(1).to(torch.device("mps"))
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
|
||||
def extract_device_id(args, name):
|
||||
for x in range(len(args)):
|
||||
if name in args[x]: return args[x+1]
|
||||
if name in args[x]:
|
||||
return args[x + 1]
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_optimal_device():
|
||||
if torch.cuda.is_available():
|
||||
from modules import shared
|
||||
@ -52,10 +56,12 @@ def enable_tf32():
|
||||
|
||||
errors.run(enable_tf32, "Enabling TF32")
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None
|
||||
dtype = torch.float16
|
||||
dtype_vae = torch.float16
|
||||
|
||||
|
||||
def randn(seed, shape):
|
||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
||||
if device.type == 'mps':
|
||||
@ -89,6 +95,11 @@ def autocast(disable=False):
|
||||
|
||||
return torch.autocast("cuda")
|
||||
|
||||
|
||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||
def mps_contiguous(input_tensor, device): return input_tensor.contiguous() if device.type == 'mps' else input_tensor
|
||||
def mps_contiguous_to(input_tensor, device): return mps_contiguous(input_tensor, device).to(device)
|
||||
def mps_contiguous(input_tensor, device):
|
||||
return input_tensor.contiguous() if device.type == 'mps' else input_tensor
|
||||
|
||||
|
||||
def mps_contiguous_to(input_tensor, device):
|
||||
return mps_contiguous(input_tensor, device).to(device)
|
||||
|
Loading…
Reference in New Issue
Block a user