2022-09-04 23:54:12 +08:00
|
|
|
import os
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
2022-09-26 22:29:50 +08:00
|
|
|
from basicsr.utils.download_util import load_file_from_url
|
2022-09-04 23:54:12 +08:00
|
|
|
|
2022-10-09 19:02:12 +08:00
|
|
|
import modules.esrgan_model_arch as arch
|
2022-10-04 16:24:35 +08:00
|
|
|
from modules import shared, modelloader, images, devices
|
2022-09-30 06:46:23 +08:00
|
|
|
from modules.upscaler import Upscaler, UpscalerData
|
2022-09-26 22:29:50 +08:00
|
|
|
from modules.shared import opts
|
2022-09-04 23:54:12 +08:00
|
|
|
|
|
|
|
|
2022-09-30 16:42:40 +08:00
|
|
|
|
2022-10-09 19:02:12 +08:00
|
|
|
def mod2normal(state_dict):
|
|
|
|
# this code is copied from https://github.com/victorca25/iNNfer
|
|
|
|
if 'conv_first.weight' in state_dict:
|
|
|
|
crt_net = {}
|
|
|
|
items = []
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
items.append(k)
|
|
|
|
|
|
|
|
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
|
|
|
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
|
|
|
|
|
|
|
for k in items.copy():
|
|
|
|
if 'RDB' in k:
|
|
|
|
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
|
|
|
|
if '.weight' in k:
|
|
|
|
ori_k = ori_k.replace('.weight', '.0.weight')
|
|
|
|
elif '.bias' in k:
|
|
|
|
ori_k = ori_k.replace('.bias', '.0.bias')
|
|
|
|
crt_net[ori_k] = state_dict[k]
|
|
|
|
items.remove(k)
|
|
|
|
|
|
|
|
crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
|
|
|
|
crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
|
|
|
|
crt_net['model.3.weight'] = state_dict['upconv1.weight']
|
|
|
|
crt_net['model.3.bias'] = state_dict['upconv1.bias']
|
|
|
|
crt_net['model.6.weight'] = state_dict['upconv2.weight']
|
|
|
|
crt_net['model.6.bias'] = state_dict['upconv2.bias']
|
|
|
|
crt_net['model.8.weight'] = state_dict['HRconv.weight']
|
|
|
|
crt_net['model.8.bias'] = state_dict['HRconv.bias']
|
|
|
|
crt_net['model.10.weight'] = state_dict['conv_last.weight']
|
|
|
|
crt_net['model.10.bias'] = state_dict['conv_last.bias']
|
|
|
|
state_dict = crt_net
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def resrgan2normal(state_dict, nb=23):
|
|
|
|
# this code is copied from https://github.com/victorca25/iNNfer
|
|
|
|
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
|
|
|
|
crt_net = {}
|
|
|
|
items = []
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
items.append(k)
|
|
|
|
|
|
|
|
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
|
|
|
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
|
|
|
|
|
|
|
for k in items.copy():
|
|
|
|
if "rdb" in k:
|
|
|
|
ori_k = k.replace('body.', 'model.1.sub.')
|
|
|
|
ori_k = ori_k.replace('.rdb', '.RDB')
|
|
|
|
if '.weight' in k:
|
|
|
|
ori_k = ori_k.replace('.weight', '.0.weight')
|
|
|
|
elif '.bias' in k:
|
|
|
|
ori_k = ori_k.replace('.bias', '.0.bias')
|
|
|
|
crt_net[ori_k] = state_dict[k]
|
|
|
|
items.remove(k)
|
|
|
|
|
|
|
|
crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
|
|
|
|
crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
|
|
|
|
crt_net['model.3.weight'] = state_dict['conv_up1.weight']
|
|
|
|
crt_net['model.3.bias'] = state_dict['conv_up1.bias']
|
|
|
|
crt_net['model.6.weight'] = state_dict['conv_up2.weight']
|
|
|
|
crt_net['model.6.bias'] = state_dict['conv_up2.bias']
|
|
|
|
crt_net['model.8.weight'] = state_dict['conv_hr.weight']
|
|
|
|
crt_net['model.8.bias'] = state_dict['conv_hr.bias']
|
|
|
|
crt_net['model.10.weight'] = state_dict['conv_last.weight']
|
|
|
|
crt_net['model.10.bias'] = state_dict['conv_last.bias']
|
|
|
|
state_dict = crt_net
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def infer_params(state_dict):
|
|
|
|
# this code is copied from https://github.com/victorca25/iNNfer
|
|
|
|
scale2x = 0
|
|
|
|
scalemin = 6
|
|
|
|
n_uplayer = 0
|
|
|
|
plus = False
|
|
|
|
|
|
|
|
for block in list(state_dict):
|
|
|
|
parts = block.split(".")
|
|
|
|
n_parts = len(parts)
|
|
|
|
if n_parts == 5 and parts[2] == "sub":
|
|
|
|
nb = int(parts[3])
|
|
|
|
elif n_parts == 3:
|
|
|
|
part_num = int(parts[1])
|
|
|
|
if (part_num > scalemin
|
|
|
|
and parts[0] == "model"
|
|
|
|
and parts[2] == "weight"):
|
|
|
|
scale2x += 1
|
|
|
|
if part_num > n_uplayer:
|
|
|
|
n_uplayer = part_num
|
|
|
|
out_nc = state_dict[block].shape[0]
|
|
|
|
if not plus and "conv1x1" in block:
|
|
|
|
plus = True
|
|
|
|
|
|
|
|
nf = state_dict["model.0.weight"].shape[0]
|
|
|
|
in_nc = state_dict["model.0.weight"].shape[1]
|
|
|
|
out_nc = out_nc
|
|
|
|
scale = 2 ** scale2x
|
|
|
|
|
|
|
|
return in_nc, out_nc, nf, nb, plus, scale
|
2022-09-30 16:42:40 +08:00
|
|
|
|
|
|
|
|
2022-09-30 06:46:23 +08:00
|
|
|
class UpscalerESRGAN(Upscaler):
|
|
|
|
def __init__(self, dirname):
|
|
|
|
self.name = "ESRGAN"
|
2022-10-03 01:58:17 +08:00
|
|
|
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
|
|
|
|
self.model_name = "ESRGAN_4x"
|
2022-09-30 06:46:23 +08:00
|
|
|
self.scalers = []
|
|
|
|
self.user_path = dirname
|
|
|
|
super().__init__()
|
|
|
|
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
|
|
|
scalers = []
|
|
|
|
if len(model_paths) == 0:
|
|
|
|
scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
|
|
|
|
scalers.append(scaler_data)
|
|
|
|
for file in model_paths:
|
|
|
|
if "http" in file:
|
|
|
|
name = self.model_name
|
|
|
|
else:
|
|
|
|
name = modelloader.friendly_name(file)
|
|
|
|
|
|
|
|
scaler_data = UpscalerData(name, file, self, 4)
|
|
|
|
self.scalers.append(scaler_data)
|
|
|
|
|
|
|
|
def do_upscale(self, img, selected_model):
|
|
|
|
model = self.load_model(selected_model)
|
|
|
|
if model is None:
|
|
|
|
return img
|
2022-10-04 16:24:35 +08:00
|
|
|
model.to(devices.device_esrgan)
|
2022-09-30 06:46:23 +08:00
|
|
|
img = esrgan_upscale(model, img)
|
|
|
|
return img
|
2022-09-08 20:49:47 +08:00
|
|
|
|
2022-09-30 06:46:23 +08:00
|
|
|
def load_model(self, path: str):
|
|
|
|
if "http" in path:
|
|
|
|
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
|
|
|
file_name="%s.pth" % self.model_name,
|
|
|
|
progress=True)
|
2022-09-04 23:54:12 +08:00
|
|
|
else:
|
2022-09-30 06:46:23 +08:00
|
|
|
filename = path
|
|
|
|
if not os.path.exists(filename) or filename is None:
|
|
|
|
print("Unable to load %s from %s" % (self.model_path, filename))
|
|
|
|
return None
|
2022-09-30 16:42:40 +08:00
|
|
|
|
2022-10-09 19:02:12 +08:00
|
|
|
state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
|
|
|
|
|
|
|
|
if "params_ema" in state_dict:
|
|
|
|
state_dict = state_dict["params_ema"]
|
|
|
|
elif "params" in state_dict:
|
|
|
|
state_dict = state_dict["params"]
|
|
|
|
num_conv = 16 if "realesr-animevideov3" in filename else 32
|
|
|
|
model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
|
|
|
|
model.load_state_dict(state_dict)
|
|
|
|
model.eval()
|
|
|
|
return model
|
|
|
|
|
|
|
|
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
|
|
|
|
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
|
|
|
|
state_dict = resrgan2normal(state_dict, nb)
|
|
|
|
elif "conv_first.weight" in state_dict:
|
|
|
|
state_dict = mod2normal(state_dict)
|
|
|
|
elif "model.0.weight" not in state_dict:
|
|
|
|
raise Exception("The file is not a recognized ESRGAN model.")
|
|
|
|
|
|
|
|
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
|
2022-09-30 06:46:23 +08:00
|
|
|
|
2022-10-09 19:02:12 +08:00
|
|
|
model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
|
|
|
|
model.load_state_dict(state_dict)
|
|
|
|
model.eval()
|
2022-09-30 16:42:40 +08:00
|
|
|
|
2022-10-09 19:02:12 +08:00
|
|
|
return model
|
2022-09-30 06:46:23 +08:00
|
|
|
|
2022-09-04 23:54:12 +08:00
|
|
|
|
|
|
|
def upscale_without_tiling(model, img):
|
|
|
|
img = np.array(img)
|
|
|
|
img = img[:, :, ::-1]
|
2022-10-09 19:02:12 +08:00
|
|
|
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
2022-09-04 23:54:12 +08:00
|
|
|
img = torch.from_numpy(img).float()
|
2022-10-25 14:01:57 +08:00
|
|
|
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
|
2022-09-04 23:54:12 +08:00
|
|
|
with torch.no_grad():
|
|
|
|
output = model(img)
|
|
|
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
|
|
output = 255. * np.moveaxis(output, 0, 2)
|
|
|
|
output = output.astype(np.uint8)
|
|
|
|
output = output[:, :, ::-1]
|
|
|
|
return Image.fromarray(output, 'RGB')
|
|
|
|
|
|
|
|
|
|
|
|
def esrgan_upscale(model, img):
|
2022-09-21 21:38:38 +08:00
|
|
|
if opts.ESRGAN_tile == 0:
|
2022-09-04 23:54:12 +08:00
|
|
|
return upscale_without_tiling(model, img)
|
|
|
|
|
2022-09-30 06:46:23 +08:00
|
|
|
grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
|
2022-09-04 23:54:12 +08:00
|
|
|
newtiles = []
|
|
|
|
scale_factor = 1
|
|
|
|
|
|
|
|
for y, h, row in grid.tiles:
|
|
|
|
newrow = []
|
|
|
|
for tiledata in row:
|
|
|
|
x, w, tile = tiledata
|
|
|
|
|
|
|
|
output = upscale_without_tiling(model, tile)
|
|
|
|
scale_factor = output.width // tile.width
|
|
|
|
|
|
|
|
newrow.append([x * scale_factor, w * scale_factor, output])
|
|
|
|
newtiles.append([y * scale_factor, h * scale_factor, newrow])
|
|
|
|
|
2022-09-30 16:42:40 +08:00
|
|
|
newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
|
2022-09-30 06:46:23 +08:00
|
|
|
output = images.combine_grid(newgrid)
|
2022-09-04 23:54:12 +08:00
|
|
|
return output
|