2023-10-01 12:25:19 +08:00
|
|
|
from transformers import BertPreTrainedModel,BertConfig
|
2023-09-23 17:51:41 +08:00
|
|
|
import torch.nn as nn
|
|
|
|
import torch
|
|
|
|
from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
|
|
|
|
from transformers import XLMRobertaModel,XLMRobertaTokenizer
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
class BertSeriesConfig(BertConfig):
|
|
|
|
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
|
|
|
|
|
|
|
|
super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
|
|
|
|
self.project_dim = project_dim
|
|
|
|
self.pooler_fn = pooler_fn
|
|
|
|
self.learn_encoder = learn_encoder
|
|
|
|
|
|
|
|
class RobertaSeriesConfig(XLMRobertaConfig):
|
|
|
|
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
|
|
|
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
self.project_dim = project_dim
|
|
|
|
self.pooler_fn = pooler_fn
|
|
|
|
self.learn_encoder = learn_encoder
|
|
|
|
|
|
|
|
|
|
|
|
class BertSeriesModelWithTransformation(BertPreTrainedModel):
|
|
|
|
|
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
|
|
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
|
|
|
config_class = BertSeriesConfig
|
|
|
|
|
|
|
|
def __init__(self, config=None, **kargs):
|
2023-10-01 12:25:19 +08:00
|
|
|
# modify initialization for autoloading
|
2023-09-23 17:51:41 +08:00
|
|
|
if config is None:
|
|
|
|
config = XLMRobertaConfig()
|
|
|
|
config.attention_probs_dropout_prob= 0.1
|
|
|
|
config.bos_token_id=0
|
|
|
|
config.eos_token_id=2
|
|
|
|
config.hidden_act='gelu'
|
|
|
|
config.hidden_dropout_prob=0.1
|
|
|
|
config.hidden_size=1024
|
|
|
|
config.initializer_range=0.02
|
|
|
|
config.intermediate_size=4096
|
|
|
|
config.layer_norm_eps=1e-05
|
|
|
|
config.max_position_embeddings=514
|
|
|
|
|
|
|
|
config.num_attention_heads=16
|
|
|
|
config.num_hidden_layers=24
|
|
|
|
config.output_past=True
|
|
|
|
config.pad_token_id=1
|
|
|
|
config.position_embedding_type= "absolute"
|
|
|
|
|
|
|
|
config.type_vocab_size= 1
|
|
|
|
config.use_cache=True
|
|
|
|
config.vocab_size= 250002
|
|
|
|
config.project_dim = 1024
|
|
|
|
config.learn_encoder = False
|
|
|
|
super().__init__(config)
|
|
|
|
self.roberta = XLMRobertaModel(config)
|
|
|
|
self.transformation = nn.Linear(config.hidden_size,config.project_dim)
|
|
|
|
# self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
|
|
|
|
# self.pooler = lambda x: x[:,0]
|
|
|
|
# self.post_init()
|
|
|
|
|
|
|
|
self.has_pre_transformation = True
|
|
|
|
if self.has_pre_transformation:
|
|
|
|
self.transformation_pre = nn.Linear(config.hidden_size, config.project_dim)
|
|
|
|
self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
def encode(self,c):
|
|
|
|
device = next(self.parameters()).device
|
|
|
|
text = self.tokenizer(c,
|
|
|
|
truncation=True,
|
|
|
|
max_length=77,
|
|
|
|
return_length=False,
|
|
|
|
return_overflowing_tokens=False,
|
|
|
|
padding="max_length",
|
|
|
|
return_tensors="pt")
|
|
|
|
text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
|
|
|
|
text["attention_mask"] = torch.tensor(
|
|
|
|
text['attention_mask']).to(device)
|
|
|
|
features = self(**text)
|
2023-10-01 12:25:19 +08:00
|
|
|
return features['projection_state']
|
2023-09-23 17:51:41 +08:00
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
) :
|
|
|
|
r"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self.roberta(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=True,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
|
|
|
|
# # last module outputs
|
|
|
|
# sequence_output = outputs[0]
|
|
|
|
|
|
|
|
|
|
|
|
# # project every module
|
|
|
|
# sequence_output_ln = self.pre_LN(sequence_output)
|
|
|
|
|
|
|
|
# # pooler
|
|
|
|
# pooler_output = self.pooler(sequence_output_ln)
|
|
|
|
# pooler_output = self.transformation(pooler_output)
|
|
|
|
# projection_state = self.transformation(outputs.last_hidden_state)
|
|
|
|
|
|
|
|
if self.has_pre_transformation:
|
|
|
|
sequence_output2 = outputs["hidden_states"][-2]
|
|
|
|
sequence_output2 = self.pre_LN(sequence_output2)
|
|
|
|
projection_state2 = self.transformation_pre(sequence_output2)
|
|
|
|
|
|
|
|
return {
|
|
|
|
"projection_state": projection_state2,
|
|
|
|
"last_hidden_state": outputs.last_hidden_state,
|
|
|
|
"hidden_states": outputs.hidden_states,
|
|
|
|
"attentions": outputs.attentions,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
projection_state = self.transformation(outputs.last_hidden_state)
|
|
|
|
return {
|
|
|
|
"projection_state": projection_state,
|
|
|
|
"last_hidden_state": outputs.last_hidden_state,
|
|
|
|
"hidden_states": outputs.hidden_states,
|
|
|
|
"attentions": outputs.attentions,
|
|
|
|
}
|
2023-10-01 12:25:19 +08:00
|
|
|
|
|
|
|
|
2023-09-23 17:51:41 +08:00
|
|
|
# return {
|
|
|
|
# 'pooler_output':pooler_output,
|
|
|
|
# 'last_hidden_state':outputs.last_hidden_state,
|
|
|
|
# 'hidden_states':outputs.hidden_states,
|
|
|
|
# 'attentions':outputs.attentions,
|
|
|
|
# 'projection_state':projection_state,
|
|
|
|
# 'sequence_out': sequence_output
|
|
|
|
# }
|
|
|
|
|
|
|
|
|
|
|
|
class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
|
|
|
|
base_model_prefix = 'roberta'
|
2023-10-01 12:25:19 +08:00
|
|
|
config_class= RobertaSeriesConfig
|