2022-10-17 14:58:42 +08:00
|
|
|
import uvicorn
|
2022-10-24 02:35:49 +08:00
|
|
|
from gradio import processing_utils
|
2022-10-23 07:13:16 +08:00
|
|
|
from fastapi import APIRouter, HTTPException
|
2022-10-24 02:35:49 +08:00
|
|
|
import modules.shared as shared
|
2022-10-23 07:24:04 +08:00
|
|
|
from modules.api.models import *
|
2022-10-24 02:35:49 +08:00
|
|
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
|
|
|
from modules.sd_samplers import all_samplers
|
2022-10-23 10:13:32 +08:00
|
|
|
from modules.extras import run_extras
|
|
|
|
|
|
|
|
def upscaler_to_index(name: str):
|
|
|
|
try:
|
|
|
|
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
|
|
|
except:
|
|
|
|
raise HTTPException(status_code=400, detail="Upscaler not found")
|
2022-10-17 14:58:42 +08:00
|
|
|
|
2022-10-19 13:19:01 +08:00
|
|
|
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
2022-10-19 03:04:56 +08:00
|
|
|
|
2022-10-17 14:58:42 +08:00
|
|
|
class Api:
|
2022-10-18 14:51:53 +08:00
|
|
|
def __init__(self, app, queue_lock):
|
2022-10-17 14:58:42 +08:00
|
|
|
self.router = APIRouter()
|
2022-10-18 14:51:53 +08:00
|
|
|
self.app = app
|
|
|
|
self.queue_lock = queue_lock
|
2022-10-23 10:13:32 +08:00
|
|
|
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
2022-10-24 02:13:37 +08:00
|
|
|
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
2022-10-23 10:13:32 +08:00
|
|
|
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
2022-10-24 02:35:49 +08:00
|
|
|
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
2022-10-23 05:10:28 +08:00
|
|
|
|
2022-10-22 07:27:40 +08:00
|
|
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
2022-10-19 03:04:56 +08:00
|
|
|
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
|
|
|
|
|
|
|
if sampler_index is None:
|
|
|
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
|
|
|
2022-10-18 03:10:36 +08:00
|
|
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
|
|
|
"sd_model": shared.sd_model,
|
2022-10-19 03:04:56 +08:00
|
|
|
"sampler_index": sampler_index[0],
|
2022-10-18 04:36:14 +08:00
|
|
|
"do_not_save_samples": True,
|
|
|
|
"do_not_save_grid": True
|
2022-10-18 03:10:36 +08:00
|
|
|
}
|
|
|
|
)
|
|
|
|
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
|
|
|
# Override object param
|
2022-10-18 14:51:53 +08:00
|
|
|
with self.queue_lock:
|
|
|
|
processed = process_images(p)
|
2022-10-17 14:58:42 +08:00
|
|
|
|
2022-10-24 02:13:37 +08:00
|
|
|
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
2022-10-17 14:58:42 +08:00
|
|
|
|
2022-10-24 02:35:49 +08:00
|
|
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.info)
|
2022-10-17 14:58:42 +08:00
|
|
|
|
2022-10-22 07:27:40 +08:00
|
|
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
|
|
|
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
|
|
|
|
|
|
|
if sampler_index is None:
|
|
|
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
|
|
|
|
|
|
|
|
|
|
init_images = img2imgreq.init_images
|
|
|
|
if init_images is None:
|
|
|
|
raise HTTPException(status_code=404, detail="Init image not found")
|
|
|
|
|
2022-10-23 03:42:00 +08:00
|
|
|
mask = img2imgreq.mask
|
|
|
|
if mask:
|
2022-10-24 02:13:37 +08:00
|
|
|
mask = processing_utils.decode_base64_to_image(mask)
|
2022-10-23 03:42:00 +08:00
|
|
|
|
2022-10-22 07:27:40 +08:00
|
|
|
|
|
|
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
|
|
|
"sd_model": shared.sd_model,
|
|
|
|
"sampler_index": sampler_index[0],
|
|
|
|
"do_not_save_samples": True,
|
2022-10-23 05:10:28 +08:00
|
|
|
"do_not_save_grid": True,
|
|
|
|
"mask": mask
|
2022-10-22 07:27:40 +08:00
|
|
|
}
|
|
|
|
)
|
|
|
|
p = StableDiffusionProcessingImg2Img(**vars(populate))
|
|
|
|
|
|
|
|
imgs = []
|
|
|
|
for img in init_images:
|
2022-10-24 02:13:37 +08:00
|
|
|
img = processing_utils.decode_base64_to_image(img)
|
2022-10-22 07:27:40 +08:00
|
|
|
imgs = [img] * p.batch_size
|
|
|
|
|
|
|
|
p.init_images = imgs
|
|
|
|
# Override object param
|
|
|
|
with self.queue_lock:
|
|
|
|
processed = process_images(p)
|
|
|
|
|
2022-10-24 02:13:37 +08:00
|
|
|
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
2022-10-24 02:35:49 +08:00
|
|
|
|
2022-10-24 02:13:37 +08:00
|
|
|
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info)
|
2022-10-17 14:58:42 +08:00
|
|
|
|
2022-10-23 10:13:32 +08:00
|
|
|
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
|
|
|
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
|
|
|
upscaler2Index = upscaler_to_index(req.upscaler_2)
|
|
|
|
|
|
|
|
reqDict = vars(req)
|
|
|
|
reqDict.pop('upscaler_1')
|
|
|
|
reqDict.pop('upscaler_2')
|
|
|
|
|
2022-10-24 02:35:49 +08:00
|
|
|
reqDict['image'] = processing_utils.decode_base64_to_image(reqDict['image'])
|
2022-10-23 10:13:32 +08:00
|
|
|
|
|
|
|
with self.queue_lock:
|
|
|
|
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="")
|
|
|
|
|
2022-10-24 02:35:49 +08:00
|
|
|
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2])
|
2022-10-24 00:07:59 +08:00
|
|
|
|
|
|
|
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
|
|
|
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
|
|
|
upscaler2Index = upscaler_to_index(req.upscaler_2)
|
|
|
|
|
|
|
|
reqDict = vars(req)
|
|
|
|
reqDict.pop('upscaler_1')
|
|
|
|
reqDict.pop('upscaler_2')
|
|
|
|
|
|
|
|
reqDict['image_folder'] = list(map(processing_utils.decode_base64_to_file, reqDict['imageList']))
|
|
|
|
reqDict.pop('imageList')
|
|
|
|
|
|
|
|
with self.queue_lock:
|
|
|
|
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=1, image="", input_dir="", output_dir="")
|
|
|
|
|
|
|
|
return ExtrasBatchImagesResponse(images=list(map(processing_utils.encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2])
|
|
|
|
|
|
|
|
def extras_folder_processing_api(self):
|
|
|
|
raise NotImplementedError
|
2022-10-17 14:58:42 +08:00
|
|
|
|
2022-10-19 13:19:01 +08:00
|
|
|
def pnginfoapi(self):
|
2022-10-17 14:58:42 +08:00
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def launch(self, server_name, port):
|
2022-10-18 14:51:53 +08:00
|
|
|
self.app.include_router(self.router)
|
|
|
|
uvicorn.run(self.app, host=server_name, port=port)
|