stable-diffusion-webui/modules/extras.py

236 lines
9.6 KiB
Python
Raw Normal View History

2022-10-10 09:26:52 +08:00
import math
import os
import numpy as np
from PIL import Image
2022-09-26 07:22:12 +08:00
import torch
import tqdm
2022-09-26 07:22:12 +08:00
from modules import processing, shared, images, devices, sd_models
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
import piexif
2022-09-14 20:20:05 +08:00
import piexif.helper
import gradio as gr
cached_images = {}
2022-10-10 09:26:52 +08:00
def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
devices.torch_gc()
2022-09-16 11:23:37 +08:00
imageArr = []
# Also keep track of original file names
imageNameArr = []
if extras_mode == 1:
2022-09-16 11:23:37 +08:00
#convert file to pillow image
for img in image_folder:
image = Image.open(img)
2022-09-16 11:23:37 +08:00
imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0])
else:
imageArr.append(image)
imageNameArr.append(None)
outpath = opts.outdir_samples or opts.outdir_extras_samples
outputs = []
for image, image_name in zip(imageArr, imageNameArr):
2022-09-26 22:29:50 +08:00
if image is None:
return outputs, "Please select an input image.", ''
2022-09-16 11:23:37 +08:00
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
if gfpgan_visibility > 0:
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
2022-09-16 11:23:37 +08:00
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
2022-09-16 11:23:37 +08:00
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
image = res
2022-09-16 11:23:37 +08:00
if codeformer_visibility > 0:
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
2022-09-16 11:23:37 +08:00
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
2022-09-16 11:23:37 +08:00
image = res
2022-10-10 09:26:52 +08:00
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
2022-09-16 11:23:37 +08:00
if upscaling_resize != 1.0:
2022-10-10 09:26:52 +08:00
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
2022-09-16 11:23:37 +08:00
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
pixels = tuple(np.array(small).flatten().tolist())
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
2022-09-16 11:23:37 +08:00
c = cached_images.get(key)
if c is None:
upscaler = shared.sd_upscalers[scaler_index]
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
2022-10-10 09:26:52 +08:00
if mode == 1 and crop:
2022-10-11 02:04:21 +08:00
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
c = cropped
2022-09-16 11:23:37 +08:00
cached_images[key] = c
2022-09-16 11:23:37 +08:00
return c
2022-09-16 11:23:37 +08:00
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
2022-10-10 09:26:52 +08:00
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
2022-09-16 11:23:37 +08:00
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
2022-10-10 09:26:52 +08:00
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
2022-09-16 11:23:37 +08:00
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
res = Image.blend(res, res2, extras_upscaler_2_visibility)
2022-09-16 11:23:37 +08:00
image = res
2022-09-16 11:23:37 +08:00
while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))]
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
forced_filename=image_name if opts.use_original_name_batch else None)
if opts.enable_pnginfo:
image.info = existing_pnginfo
image.info["extras"] = info
outputs.append(image)
devices.torch_gc()
return outputs, plaintext_to_html(info), ''
2022-09-17 14:07:07 +08:00
def run_pnginfo(image):
if image is None:
return '', '', ''
items = image.info
geninfo = ''
if "exif" in image.info:
exif = piexif.load(image.info["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
2022-09-14 20:20:05 +08:00
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode('utf8', errors="ignore")
items['exif comment'] = exif_comment
geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration']:
items.pop(field, None)
geninfo = items.get('parameters', geninfo)
info = ''
for key, text in items.items():
info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()+"\n"
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return '', geninfo, info
2022-09-26 07:22:12 +08:00
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, interp_amount, save_as_half, custom_name):
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
def weighted_sum(theta0, theta1, theta2, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
def sigmoid(theta0, theta1, theta2, alpha):
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
def inv_sigmoid(theta0, theta1, theta2, alpha):
import math
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
return theta0 + ((theta1 - theta0) * alpha)
def add_difference(theta0, theta1, theta2, alpha):
return theta0 + (theta1 - theta2) * (1.0 - alpha)
primary_model_info = sd_models.checkpoints_list[primary_model_name]
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
print(f"Loading {primary_model_info.filename}...")
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
2022-09-28 09:34:24 +08:00
print(f"Loading {secondary_model_info.filename}...")
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
if teritary_model_info is not None:
print(f"Loading {teritary_model_info.filename}...")
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
else:
theta_2 = None
theta_funcs = {
"Weighted Sum": weighted_sum,
"Sigmoid": sigmoid,
"Inverse Sigmoid": inv_sigmoid,
"Add difference": add_difference,
}
theta_func = theta_funcs[interp_method]
print(f"Merging...")
for key in tqdm.tqdm(theta_0.keys()):
2022-09-26 07:22:12 +08:00
if 'model' in key and key in theta_1:
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key] if theta_2 else None, (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
if save_as_half:
theta_0[key] = theta_0[key].half()
2022-10-10 09:26:52 +08:00
# I believe this part should be discarded, but I'll leave it for now until I am sure
2022-09-26 07:22:12 +08:00
for key in theta_1.keys():
if 'model' in key and key not in theta_0:
theta_0[key] = theta_1[key]
if save_as_half:
theta_0[key] = theta_0[key].half()
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
2022-09-29 07:50:34 +08:00
filename = filename if custom_name == '' else (custom_name + '.ckpt')
output_modelname = os.path.join(ckpt_dir, filename)
print(f"Saving to {output_modelname}...")
2022-09-28 09:34:24 +08:00
torch.save(primary_model, output_modelname)
sd_models.list_models()
print(f"Checkpoint saved.")
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]