stable-diffusion-webui/modules/swinir.py

93 lines
4.0 KiB
Python
Raw Normal View History

import sys
import traceback
import cv2
from collections import OrderedDict
import os
import requests
from collections import namedtuple
import numpy as np
from PIL import Image
import torch
import modules.images
from modules.shared import cmd_opts, opts, device
from modules.swinir_arch import SwinIR as net
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
2022-09-20 21:36:20 +08:00
def load_model(task = "realsr", large_model = True, model_path="C:/sd/ESRGANn/4x-large.pth", scale=4):
try:
modules.shared.sd_upscalers.append(UpscalerSwin("McSwinnySwin"))
except Exception:
print(f"Error loading ESRGAN model", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if not large_model:
# use 'nearest+conv' to avoid block artifacts
model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
else:
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
pretrained_model = torch.load(model_path)
2022-09-20 21:36:20 +08:00
model.load_state_dict(pretrained_model["params_ema"], strict=True)
return model.half().to(device)
def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4):
2022-09-20 21:36:20 +08:00
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
model = load_model()
with torch.no_grad(), precision_scope("cuda"):
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, :h_old + h_pad, :]
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, :w_old + w_pad]
output = inference(img, model, tile, tile_overlap, window_size, scale)
output = output[..., :h_old * scale, :w_old * scale]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
2022-09-20 21:36:20 +08:00
return Image.fromarray(output, 'RGB')
def inference(img, model, tile, tile_overlap, window_size, scale):
# test the image tile by tile
b, c, h, w = img.size()
tile = min(tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
sf = scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
E = torch.zeros(b, c, h*sf, w*sf, dtype=torch.half, device=device).type_as(img)
W = torch.zeros_like(E, dtype=torch.half, device=device)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
output = E.div_(W)
2022-09-20 21:36:20 +08:00
return output
class UpscalerSwin(modules.images.Upscaler):
def __init__(self, title):
self.name = title
def do_upscale(self, img):
img = upscale(img)
return img