stable-diffusion-webui/modules/deepbooru.py

100 lines
3.0 KiB
Python
Raw Normal View History

import os
import re
import torch
from PIL import Image
import numpy as np
from modules import modelloader, paths, deepbooru_model, devices, images, shared
re_special = re.compile(r'([\\()])')
2022-10-06 02:50:10 +08:00
class DeepDanbooru:
def __init__(self):
self.model = None
def load(self):
if self.model is not None:
return
files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
ext_filter=[".pt"],
download_name='model-resnet_custom_v3.pt',
)
self.model = deepbooru_model.DeepDanbooruModel()
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
self.model.eval()
self.model.to(devices.cpu, devices.dtype)
def start(self):
self.load()
self.model.to(devices.device)
def stop(self):
if not shared.opts.interrogate_keep_models_in_memory:
self.model.to(devices.cpu)
devices.torch_gc()
def tag(self, pil_image):
self.start()
res = self.tag_multi(pil_image)
self.stop()
return res
def tag_multi(self, pil_image, force_disable_ranks=False):
threshold = shared.opts.interrogate_deepbooru_score_threshold
use_spaces = shared.opts.deepbooru_use_spaces
use_escape = shared.opts.deepbooru_escape
alpha_sort = shared.opts.deepbooru_sort_alpha
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
with torch.no_grad(), devices.autocast():
2022-11-21 15:56:00 +08:00
x = torch.from_numpy(a).to(devices.device)
y = self.model(x)[0].detach().cpu().numpy()
probability_dict = {}
for tag, probability in zip(self.model.tags, y):
if probability < threshold:
continue
2022-10-06 03:15:08 +08:00
if tag.startswith("rating:"):
continue
probability_dict[tag] = probability
if alpha_sort:
tags = sorted(probability_dict)
else:
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
res = []
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
for tag in [x for x in tags if x not in filtertags]:
probability = probability_dict[tag]
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{probability:.3f})"
res.append(tag_outformat)
return ", ".join(res)
model = DeepDanbooru()