mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-11-27 06:40:10 +08:00
60 lines
1.9 KiB
Python
60 lines
1.9 KiB
Python
|
import os.path
|
||
|
from concurrent.futures import ProcessPoolExecutor
|
||
|
|
||
|
import numpy as np
|
||
|
import deepdanbooru as dd
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
def _load_tf_and_return_tags(pil_image, threshold):
|
||
|
this_folder = os.path.dirname(__file__)
|
||
|
model_path = os.path.join(this_folder, '..', 'models', 'deepbooru', 'deepdanbooru-v3-20211112-sgd-e28')
|
||
|
if not os.path.exists(model_path):
|
||
|
return "Download https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip unpack and put into models/deepbooru"
|
||
|
|
||
|
tags = dd.project.load_tags_from_project(model_path)
|
||
|
model = dd.project.load_model_from_project(
|
||
|
model_path, compile_model=True
|
||
|
)
|
||
|
|
||
|
width = model.input_shape[2]
|
||
|
height = model.input_shape[1]
|
||
|
image = np.array(pil_image)
|
||
|
image = tf.image.resize(
|
||
|
image,
|
||
|
size=(height, width),
|
||
|
method=tf.image.ResizeMethod.AREA,
|
||
|
preserve_aspect_ratio=True,
|
||
|
)
|
||
|
image = image.numpy() # EagerTensor to np.array
|
||
|
image = dd.image.transform_and_pad_image(image, width, height)
|
||
|
image = image / 255.0
|
||
|
image_shape = image.shape
|
||
|
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
|
||
|
|
||
|
y = model.predict(image)[0]
|
||
|
|
||
|
result_dict = {}
|
||
|
|
||
|
for i, tag in enumerate(tags):
|
||
|
result_dict[tag] = y[i]
|
||
|
|
||
|
|
||
|
|
||
|
result_tags_out = []
|
||
|
result_tags_print = []
|
||
|
for tag in tags:
|
||
|
if result_dict[tag] >= threshold:
|
||
|
result_tags_out.append(tag)
|
||
|
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||
|
|
||
|
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||
|
|
||
|
return ', '.join(result_tags_out)
|
||
|
|
||
|
|
||
|
def get_deepbooru_tags(pil_image, threshold=0.5):
|
||
|
with ProcessPoolExecutor() as executor:
|
||
|
f = executor.submit(_load_tf_and_return_tags, pil_image, threshold)
|
||
|
ret = f.result() # will rethrow any exceptions
|
||
|
return ret
|