postgresql/contrib/pgbench/pgbench.c
Heikki Linnakangas 01a2bfd172 Fix Windows build.
I renamed a variable, but missed an #ifdef WIN32 block.
2014-09-11 15:15:40 +03:00

3795 lines
94 KiB
C

/*
* pgbench.c
*
* A simple benchmark program for PostgreSQL
* Originally written by Tatsuo Ishii and enhanced by many contributors.
*
* contrib/pgbench/pgbench.c
* Copyright (c) 2000-2014, PostgreSQL Global Development Group
* ALL RIGHTS RESERVED;
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without a written agreement
* is hereby granted, provided that the above copyright notice and this
* paragraph and the following two paragraphs appear in all copies.
*
* IN NO EVENT SHALL THE AUTHOR OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
* LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
* DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* THE AUTHOR AND DISTRIBUTORS SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#ifdef WIN32
#define FD_SETSIZE 1024 /* set before winsock2.h is included */
#endif /* ! WIN32 */
#include "postgres_fe.h"
#include "getopt_long.h"
#include "libpq-fe.h"
#include "portability/instr_time.h"
#include <ctype.h>
#include <math.h>
#include <signal.h>
#include <sys/time.h>
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h> /* for getrlimit */
#endif
#ifndef INT64_MAX
#define INT64_MAX INT64CONST(0x7FFFFFFFFFFFFFFF)
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/*
* Multi-platform pthread implementations
*/
#ifdef WIN32
/* Use native win32 threads on Windows */
typedef struct win32_pthread *pthread_t;
typedef int pthread_attr_t;
static int pthread_create(pthread_t *thread, pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
static int pthread_join(pthread_t th, void **thread_return);
#elif defined(ENABLE_THREAD_SAFETY)
/* Use platform-dependent pthread capability */
#include <pthread.h>
#else
/* Use emulation with fork. Rename pthread identifiers to avoid conflicts */
#define PTHREAD_FORK_EMULATION
#include <sys/wait.h>
#define pthread_t pg_pthread_t
#define pthread_attr_t pg_pthread_attr_t
#define pthread_create pg_pthread_create
#define pthread_join pg_pthread_join
typedef struct fork_pthread *pthread_t;
typedef int pthread_attr_t;
static int pthread_create(pthread_t *thread, pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
static int pthread_join(pthread_t th, void **thread_return);
#endif
/********************************************************************
* some configurable parameters */
/* max number of clients allowed */
#ifdef FD_SETSIZE
#define MAXCLIENTS (FD_SETSIZE - 10)
#else
#define MAXCLIENTS 1024
#endif
#define LOG_STEP_SECONDS 5 /* seconds between log messages */
#define DEFAULT_NXACTS 10 /* default nxacts */
#define MIN_GAUSSIAN_THRESHOLD 2.0 /* minimum threshold for gauss */
int nxacts = 0; /* number of transactions per client */
int duration = 0; /* duration in seconds */
/*
* scaling factor. for example, scale = 10 will make 1000000 tuples in
* pgbench_accounts table.
*/
int scale = 1;
/*
* fillfactor. for example, fillfactor = 90 will use only 90 percent
* space during inserts and leave 10 percent free.
*/
int fillfactor = 100;
/*
* create foreign key constraints on the tables?
*/
int foreign_keys = 0;
/*
* use unlogged tables?
*/
int unlogged_tables = 0;
/*
* log sampling rate (1.0 = log everything, 0.0 = option not given)
*/
double sample_rate = 0.0;
/*
* When threads are throttled to a given rate limit, this is the target delay
* to reach that rate in usec. 0 is the default and means no throttling.
*/
int64 throttle_delay = 0;
/*
* tablespace selection
*/
char *tablespace = NULL;
char *index_tablespace = NULL;
/*
* end of configurable parameters
*********************************************************************/
#define nbranches 1 /* Makes little sense to change this. Change
* -s instead */
#define ntellers 10
#define naccounts 100000
/*
* The scale factor at/beyond which 32bit integers are incapable of storing
* 64bit values.
*
* Although the actual threshold is 21474, we use 20000 because it is easier to
* document and remember, and isn't that far away from the real threshold.
*/
#define SCALE_32BIT_THRESHOLD 20000
bool use_log; /* log transaction latencies to a file */
bool use_quiet; /* quiet logging onto stderr */
int agg_interval; /* log aggregates instead of individual
* transactions */
int progress = 0; /* thread progress report every this seconds */
int progress_nclients = 0; /* number of clients for progress
* report */
int progress_nthreads = 0; /* number of threads for progress
* report */
bool is_connect; /* establish connection for each transaction */
bool is_latencies; /* report per-command latencies */
int main_pid; /* main process id used in log filename */
char *pghost = "";
char *pgport = "";
char *login = NULL;
char *dbName;
const char *progname;
volatile bool timer_exceeded = false; /* flag from signal handler */
/* variable definitions */
typedef struct
{
char *name; /* variable name */
char *value; /* its value */
} Variable;
#define MAX_FILES 128 /* max number of SQL script files allowed */
#define SHELL_COMMAND_SIZE 256 /* maximum size allowed for shell command */
/*
* structures used in custom query mode
*/
typedef struct
{
PGconn *con; /* connection handle to DB */
int id; /* client No. */
int state; /* state No. */
int cnt; /* xacts count */
int ecnt; /* error count */
int listen; /* 0 indicates that an async query has been
* sent */
int sleeping; /* 1 indicates that the client is napping */
bool throttling; /* whether nap is for throttling */
Variable *variables; /* array of variable definitions */
int nvariables;
int64 txn_scheduled; /* scheduled start time of transaction (usec) */
instr_time txn_begin; /* used for measuring schedule lag times */
instr_time stmt_begin; /* used for measuring statement latencies */
int64 txn_latencies; /* cumulated latencies */
int64 txn_sqlats; /* cumulated square latencies */
bool is_throttled; /* whether transaction throttling is done */
int use_file; /* index in sql_files for this client */
bool prepared[MAX_FILES];
} CState;
/*
* Thread state and result
*/
typedef struct
{
int tid; /* thread id */
pthread_t thread; /* thread handle */
CState *state; /* array of CState */
int nstate; /* length of state[] */
instr_time start_time; /* thread start time */
instr_time *exec_elapsed; /* time spent executing cmds (per Command) */
int *exec_count; /* number of cmd executions (per Command) */
unsigned short random_state[3]; /* separate randomness for each thread */
int64 throttle_trigger; /* previous/next throttling (us) */
int64 throttle_lag; /* total transaction lag behind throttling */
int64 throttle_lag_max; /* max transaction lag */
} TState;
#define INVALID_THREAD ((pthread_t) 0)
typedef struct
{
instr_time conn_time;
int64 xacts;
int64 latencies;
int64 sqlats;
int64 throttle_lag;
int64 throttle_lag_max;
} TResult;
/*
* queries read from files
*/
#define SQL_COMMAND 1
#define META_COMMAND 2
#define MAX_ARGS 10
typedef enum QueryMode
{
QUERY_SIMPLE, /* simple query */
QUERY_EXTENDED, /* extended query */
QUERY_PREPARED, /* extended query with prepared statements */
NUM_QUERYMODE
} QueryMode;
static QueryMode querymode = QUERY_SIMPLE;
static const char *QUERYMODE[] = {"simple", "extended", "prepared"};
typedef struct
{
char *line; /* full text of command line */
int command_num; /* unique index of this Command struct */
int type; /* command type (SQL_COMMAND or META_COMMAND) */
int argc; /* number of command words */
char *argv[MAX_ARGS]; /* command word list */
} Command;
typedef struct
{
long start_time; /* when does the interval start */
int cnt; /* number of transactions */
double min_latency; /* min/max latencies */
double max_latency;
double sum_latency; /* sum(latency), sum(latency^2) - for
* estimates */
double sum2_latency;
double min_lag;
double max_lag;
double sum_lag; /* sum(lag) */
double sum2_lag; /* sum(lag*lag) */
} AggVals;
static Command **sql_files[MAX_FILES]; /* SQL script files */
static int num_files; /* number of script files */
static int num_commands = 0; /* total number of Command structs */
static int debug = 0; /* debug flag */
/* default scenario */
static char *tpc_b = {
"\\set nbranches " CppAsString2(nbranches) " * :scale\n"
"\\set ntellers " CppAsString2(ntellers) " * :scale\n"
"\\set naccounts " CppAsString2(naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"\\setrandom bid 1 :nbranches\n"
"\\setrandom tid 1 :ntellers\n"
"\\setrandom delta -5000 5000\n"
"BEGIN;\n"
"UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid;\n"
"UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;\n"
"UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;\n"
"INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);\n"
"END;\n"
};
/* -N case */
static char *simple_update = {
"\\set nbranches " CppAsString2(nbranches) " * :scale\n"
"\\set ntellers " CppAsString2(ntellers) " * :scale\n"
"\\set naccounts " CppAsString2(naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"\\setrandom bid 1 :nbranches\n"
"\\setrandom tid 1 :ntellers\n"
"\\setrandom delta -5000 5000\n"
"BEGIN;\n"
"UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid;\n"
"INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);\n"
"END;\n"
};
/* -S case */
static char *select_only = {
"\\set naccounts " CppAsString2(naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid;\n"
};
/* Function prototypes */
static void setalarm(int seconds);
static void *threadRun(void *arg);
static void
usage(void)
{
printf("%s is a benchmarking tool for PostgreSQL.\n\n"
"Usage:\n"
" %s [OPTION]... [DBNAME]\n"
"\nInitialization options:\n"
" -i, --initialize invokes initialization mode\n"
" -F, --fillfactor=NUM set fill factor\n"
" -n, --no-vacuum do not run VACUUM after initialization\n"
" -q, --quiet quiet logging (one message each 5 seconds)\n"
" -s, --scale=NUM scaling factor\n"
" --foreign-keys create foreign key constraints between tables\n"
" --index-tablespace=TABLESPACE\n"
" create indexes in the specified tablespace\n"
" --tablespace=TABLESPACE create tables in the specified tablespace\n"
" --unlogged-tables create tables as unlogged tables\n"
"\nBenchmarking options:\n"
" -c, --client=NUM number of concurrent database clients (default: 1)\n"
" -C, --connect establish new connection for each transaction\n"
" -D, --define=VARNAME=VALUE\n"
" define variable for use by custom script\n"
" -f, --file=FILENAME read transaction script from FILENAME\n"
" -j, --jobs=NUM number of threads (default: 1)\n"
" -l, --log write transaction times to log file\n"
" -M, --protocol=simple|extended|prepared\n"
" protocol for submitting queries (default: simple)\n"
" -n, --no-vacuum do not run VACUUM before tests\n"
" -N, --skip-some-updates skip updates of pgbench_tellers and pgbench_branches\n"
" -P, --progress=NUM show thread progress report every NUM seconds\n"
" -r, --report-latencies report average latency per command\n"
" -R, --rate=NUM target rate in transactions per second\n"
" -s, --scale=NUM report this scale factor in output\n"
" -S, --select-only perform SELECT-only transactions\n"
" -t, --transactions=NUM number of transactions each client runs (default: 10)\n"
" -T, --time=NUM duration of benchmark test in seconds\n"
" -v, --vacuum-all vacuum all four standard tables before tests\n"
" --aggregate-interval=NUM aggregate data over NUM seconds\n"
" --sampling-rate=NUM fraction of transactions to log (e.g. 0.01 for 1%%)\n"
"\nCommon options:\n"
" -d, --debug print debugging output\n"
" -h, --host=HOSTNAME database server host or socket directory\n"
" -p, --port=PORT database server port number\n"
" -U, --username=USERNAME connect as specified database user\n"
" -V, --version output version information, then exit\n"
" -?, --help show this help, then exit\n"
"\n"
"Report bugs to <pgsql-bugs@postgresql.org>.\n",
progname, progname);
}
/*
* strtoint64 -- convert a string to 64-bit integer
*
* This function is a modified version of scanint8() from
* src/backend/utils/adt/int8.c.
*/
static int64
strtoint64(const char *str)
{
const char *ptr = str;
int64 result = 0;
int sign = 1;
/*
* Do our own scan, rather than relying on sscanf which might be broken
* for long long.
*/
/* skip leading spaces */
while (*ptr && isspace((unsigned char) *ptr))
ptr++;
/* handle sign */
if (*ptr == '-')
{
ptr++;
/*
* Do an explicit check for INT64_MIN. Ugly though this is, it's
* cleaner than trying to get the loop below to handle it portably.
*/
if (strncmp(ptr, "9223372036854775808", 19) == 0)
{
result = -INT64CONST(0x7fffffffffffffff) - 1;
ptr += 19;
goto gotdigits;
}
sign = -1;
}
else if (*ptr == '+')
ptr++;
/* require at least one digit */
if (!isdigit((unsigned char) *ptr))
fprintf(stderr, "invalid input syntax for integer: \"%s\"\n", str);
/* process digits */
while (*ptr && isdigit((unsigned char) *ptr))
{
int64 tmp = result * 10 + (*ptr++ - '0');
if ((tmp / 10) != result) /* overflow? */
fprintf(stderr, "value \"%s\" is out of range for type bigint\n", str);
result = tmp;
}
gotdigits:
/* allow trailing whitespace, but not other trailing chars */
while (*ptr != '\0' && isspace((unsigned char) *ptr))
ptr++;
if (*ptr != '\0')
fprintf(stderr, "invalid input syntax for integer: \"%s\"\n", str);
return ((sign < 0) ? -result : result);
}
/* random number generator: uniform distribution from min to max inclusive */
static int64
getrand(TState *thread, int64 min, int64 max)
{
/*
* Odd coding is so that min and max have approximately the same chance of
* being selected as do numbers between them.
*
* pg_erand48() is thread-safe and concurrent, which is why we use it
* rather than random(), which in glibc is non-reentrant, and therefore
* protected by a mutex, and therefore a bottleneck on machines with many
* CPUs.
*/
return min + (int64) ((max - min + 1) * pg_erand48(thread->random_state));
}
/*
* random number generator: exponential distribution from min to max inclusive.
* the threshold is so that the density of probability for the last cut-off max
* value is exp(-threshold).
*/
static int64
getExponentialRand(TState *thread, int64 min, int64 max, double threshold)
{
double cut, uniform, rand;
Assert(threshold > 0.0);
cut = exp(-threshold);
/* erand in [0, 1), uniform in (0, 1] */
uniform = 1.0 - pg_erand48(thread->random_state);
/*
* inner expresion in (cut, 1] (if threshold > 0),
* rand in [0, 1)
*/
Assert((1.0 - cut) != 0.0);
rand = - log(cut + (1.0 - cut) * uniform) / threshold;
/* return int64 random number within between min and max */
return min + (int64)((max - min + 1) * rand);
}
/* random number generator: gaussian distribution from min to max inclusive */
static int64
getGaussianRand(TState *thread, int64 min, int64 max, double threshold)
{
double stdev;
double rand;
/*
* Get user specified random number from this loop, with
* -threshold < stdev <= threshold
*
* This loop is executed until the number is in the expected range.
*
* As the minimum threshold is 2.0, the probability of looping is low:
* sqrt(-2 ln(r)) <= 2 => r >= e^{-2} ~ 0.135, then when taking the average
* sinus multiplier as 2/pi, we have a 8.6% looping probability in the
* worst case. For a 5.0 threshold value, the looping probability
* is about e^{-5} * 2 / pi ~ 0.43%.
*/
do
{
/*
* pg_erand48 generates [0,1), but for the basic version of the
* Box-Muller transform the two uniformly distributed random numbers
* are expected in (0, 1] (see http://en.wikipedia.org/wiki/Box_muller)
*/
double rand1 = 1.0 - pg_erand48(thread->random_state);
double rand2 = 1.0 - pg_erand48(thread->random_state);
/* Box-Muller basic form transform */
double var_sqrt = sqrt(-2.0 * log(rand1));
stdev = var_sqrt * sin(2.0 * M_PI * rand2);
/*
* we may try with cos, but there may be a bias induced if the previous
* value fails the test. To be on the safe side, let us try over.
*/
}
while (stdev < -threshold || stdev >= threshold);
/* stdev is in [-threshold, threshold), normalization to [0,1) */
rand = (stdev + threshold) / (threshold * 2.0);
/* return int64 random number within between min and max */
return min + (int64)((max - min + 1) * rand);
}
/*
* random number generator: generate a value, such that the series of values
* will approximate a Poisson distribution centered on the given value.
*/
static int64
getPoissonRand(TState *thread, int64 center)
{
/*
* Use inverse transform sampling to generate a value > 0, such that the
* expected (i.e. average) value is the given argument.
*/
double uniform;
/* erand in [0, 1), uniform in (0, 1] */
uniform = 1.0 - pg_erand48(thread->random_state);
return (int64) (-log(uniform) * ((double) center) + 0.5);
}
/* call PQexec() and exit() on failure */
static void
executeStatement(PGconn *con, const char *sql)
{
PGresult *res;
res = PQexec(con, sql);
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
PQclear(res);
}
/* set up a connection to the backend */
static PGconn *
doConnect(void)
{
PGconn *conn;
static char *password = NULL;
bool new_pass;
/*
* Start the connection. Loop until we have a password if requested by
* backend.
*/
do
{
#define PARAMS_ARRAY_SIZE 7
const char *keywords[PARAMS_ARRAY_SIZE];
const char *values[PARAMS_ARRAY_SIZE];
keywords[0] = "host";
values[0] = pghost;
keywords[1] = "port";
values[1] = pgport;
keywords[2] = "user";
values[2] = login;
keywords[3] = "password";
values[3] = password;
keywords[4] = "dbname";
values[4] = dbName;
keywords[5] = "fallback_application_name";
values[5] = progname;
keywords[6] = NULL;
values[6] = NULL;
new_pass = false;
conn = PQconnectdbParams(keywords, values, true);
if (!conn)
{
fprintf(stderr, "Connection to database \"%s\" failed\n",
dbName);
return NULL;
}
if (PQstatus(conn) == CONNECTION_BAD &&
PQconnectionNeedsPassword(conn) &&
password == NULL)
{
PQfinish(conn);
password = simple_prompt("Password: ", 100, false);
new_pass = true;
}
} while (new_pass);
/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD)
{
fprintf(stderr, "Connection to database \"%s\" failed:\n%s",
dbName, PQerrorMessage(conn));
PQfinish(conn);
return NULL;
}
return conn;
}
/* throw away response from backend */
static void
discard_response(CState *state)
{
PGresult *res;
do
{
res = PQgetResult(state->con);
if (res)
PQclear(res);
} while (res);
}
static int
compareVariables(const void *v1, const void *v2)
{
return strcmp(((const Variable *) v1)->name,
((const Variable *) v2)->name);
}
static char *
getVariable(CState *st, char *name)
{
Variable key,
*var;
/* On some versions of Solaris, bsearch of zero items dumps core */
if (st->nvariables <= 0)
return NULL;
key.name = name;
var = (Variable *) bsearch((void *) &key,
(void *) st->variables,
st->nvariables,
sizeof(Variable),
compareVariables);
if (var != NULL)
return var->value;
else
return NULL;
}
/* check whether the name consists of alphabets, numerals and underscores. */
static bool
isLegalVariableName(const char *name)
{
int i;
for (i = 0; name[i] != '\0'; i++)
{
if (!isalnum((unsigned char) name[i]) && name[i] != '_')
return false;
}
return true;
}
static int
putVariable(CState *st, const char *context, char *name, char *value)
{
Variable key,
*var;
key.name = name;
/* On some versions of Solaris, bsearch of zero items dumps core */
if (st->nvariables > 0)
var = (Variable *) bsearch((void *) &key,
(void *) st->variables,
st->nvariables,
sizeof(Variable),
compareVariables);
else
var = NULL;
if (var == NULL)
{
Variable *newvars;
/*
* Check for the name only when declaring a new variable to avoid
* overhead.
*/
if (!isLegalVariableName(name))
{
fprintf(stderr, "%s: invalid variable name '%s'\n", context, name);
return false;
}
if (st->variables)
newvars = (Variable *) pg_realloc(st->variables,
(st->nvariables + 1) * sizeof(Variable));
else
newvars = (Variable *) pg_malloc(sizeof(Variable));
st->variables = newvars;
var = &newvars[st->nvariables];
var->name = pg_strdup(name);
var->value = pg_strdup(value);
st->nvariables++;
qsort((void *) st->variables, st->nvariables, sizeof(Variable),
compareVariables);
}
else
{
char *val;
/* dup then free, in case value is pointing at this variable */
val = pg_strdup(value);
free(var->value);
var->value = val;
}
return true;
}
static char *
parseVariable(const char *sql, int *eaten)
{
int i = 0;
char *name;
do
{
i++;
} while (isalnum((unsigned char) sql[i]) || sql[i] == '_');
if (i == 1)
return NULL;
name = pg_malloc(i);
memcpy(name, &sql[1], i - 1);
name[i - 1] = '\0';
*eaten = i;
return name;
}
static char *
replaceVariable(char **sql, char *param, int len, char *value)
{
int valueln = strlen(value);
if (valueln > len)
{
size_t offset = param - *sql;
*sql = pg_realloc(*sql, strlen(*sql) - len + valueln + 1);
param = *sql + offset;
}
if (valueln != len)
memmove(param + valueln, param + len, strlen(param + len) + 1);
strncpy(param, value, valueln);
return param + valueln;
}
static char *
assignVariables(CState *st, char *sql)
{
char *p,
*name,
*val;
p = sql;
while ((p = strchr(p, ':')) != NULL)
{
int eaten;
name = parseVariable(p, &eaten);
if (name == NULL)
{
while (*p == ':')
{
p++;
}
continue;
}
val = getVariable(st, name);
free(name);
if (val == NULL)
{
p++;
continue;
}
p = replaceVariable(&sql, p, eaten, val);
}
return sql;
}
static void
getQueryParams(CState *st, const Command *command, const char **params)
{
int i;
for (i = 0; i < command->argc - 1; i++)
params[i] = getVariable(st, command->argv[i + 1]);
}
/*
* Run a shell command. The result is assigned to the variable if not NULL.
* Return true if succeeded, or false on error.
*/
static bool
runShellCommand(CState *st, char *variable, char **argv, int argc)
{
char command[SHELL_COMMAND_SIZE];
int i,
len = 0;
FILE *fp;
char res[64];
char *endptr;
int retval;
/*----------
* Join arguments with whitespace separators. Arguments starting with
* exactly one colon are treated as variables:
* name - append a string "name"
* :var - append a variable named 'var'
* ::name - append a string ":name"
*----------
*/
for (i = 0; i < argc; i++)
{
char *arg;
int arglen;
if (argv[i][0] != ':')
{
arg = argv[i]; /* a string literal */
}
else if (argv[i][1] == ':')
{
arg = argv[i] + 1; /* a string literal starting with colons */
}
else if ((arg = getVariable(st, argv[i] + 1)) == NULL)
{
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[i]);
return false;
}
arglen = strlen(arg);
if (len + arglen + (i > 0 ? 1 : 0) >= SHELL_COMMAND_SIZE - 1)
{
fprintf(stderr, "%s: too long shell command\n", argv[0]);
return false;
}
if (i > 0)
command[len++] = ' ';
memcpy(command + len, arg, arglen);
len += arglen;
}
command[len] = '\0';
/* Fast path for non-assignment case */
if (variable == NULL)
{
if (system(command))
{
if (!timer_exceeded)
fprintf(stderr, "%s: cannot launch shell command\n", argv[0]);
return false;
}
return true;
}
/* Execute the command with pipe and read the standard output. */
if ((fp = popen(command, "r")) == NULL)
{
fprintf(stderr, "%s: cannot launch shell command\n", argv[0]);
return false;
}
if (fgets(res, sizeof(res), fp) == NULL)
{
if (!timer_exceeded)
fprintf(stderr, "%s: cannot read the result\n", argv[0]);
return false;
}
if (pclose(fp) < 0)
{
fprintf(stderr, "%s: cannot close shell command\n", argv[0]);
return false;
}
/* Check whether the result is an integer and assign it to the variable */
retval = (int) strtol(res, &endptr, 10);
while (*endptr != '\0' && isspace((unsigned char) *endptr))
endptr++;
if (*res == '\0' || *endptr != '\0')
{
fprintf(stderr, "%s: must return an integer ('%s' returned)\n", argv[0], res);
return false;
}
snprintf(res, sizeof(res), "%d", retval);
if (!putVariable(st, "setshell", variable, res))
return false;
#ifdef DEBUG
printf("shell parameter name: %s, value: %s\n", argv[1], res);
#endif
return true;
}
#define MAX_PREPARE_NAME 32
static void
preparedStatementName(char *buffer, int file, int state)
{
sprintf(buffer, "P%d_%d", file, state);
}
static bool
clientDone(CState *st, bool ok)
{
(void) ok; /* unused */
if (st->con != NULL)
{
PQfinish(st->con);
st->con = NULL;
}
return false; /* always false */
}
static
void
agg_vals_init(AggVals *aggs, instr_time start)
{
/* basic counters */
aggs->cnt = 0; /* number of transactions */
aggs->sum_latency = 0; /* SUM(latency) */
aggs->sum2_latency = 0; /* SUM(latency*latency) */
/* min and max transaction duration */
aggs->min_latency = 0;
aggs->max_latency = 0;
/* schedule lag counters */
aggs->sum_lag = 0;
aggs->sum2_lag = 0;
aggs->min_lag = 0;
aggs->max_lag = 0;
/* start of the current interval */
aggs->start_time = INSTR_TIME_GET_DOUBLE(start);
}
/* return false iff client should be disconnected */
static bool
doCustom(TState *thread, CState *st, instr_time *conn_time, FILE *logfile, AggVals *agg)
{
PGresult *res;
Command **commands;
bool trans_needs_throttle = false;
top:
commands = sql_files[st->use_file];
/*
* Handle throttling once per transaction by sleeping. It is simpler to
* do this here rather than at the end, because so much complicated logic
* happens below when statements finish.
*/
if (throttle_delay && !st->is_throttled)
{
/*
* Generate a delay such that the series of delays will approximate a
* Poisson distribution centered on the throttle_delay time.
*
* If transactions are too slow or a given wait is shorter than a
* transaction, the next transaction will start right away.
*/
int64 wait = getPoissonRand(thread, throttle_delay);
thread->throttle_trigger += wait;
st->txn_scheduled = thread->throttle_trigger;
st->sleeping = 1;
st->throttling = true;
st->is_throttled = true;
if (debug)
fprintf(stderr, "client %d throttling " INT64_FORMAT " us\n",
st->id, wait);
}
if (st->sleeping)
{ /* are we sleeping? */
instr_time now;
int64 now_us;
INSTR_TIME_SET_CURRENT(now);
now_us = INSTR_TIME_GET_MICROSEC(now);
if (st->txn_scheduled <= now_us)
{
st->sleeping = 0; /* Done sleeping, go ahead with next command */
if (st->throttling)
{
/* Measure lag of throttled transaction relative to target */
int64 lag = now_us - st->txn_scheduled;
thread->throttle_lag += lag;
if (lag > thread->throttle_lag_max)
thread->throttle_lag_max = lag;
st->throttling = false;
}
}
else
return true; /* Still sleeping, nothing to do here */
}
if (st->listen)
{ /* are we receiver? */
instr_time now;
bool now_valid = false;
INSTR_TIME_SET_ZERO(now); /* initialize to keep compiler quiet */
if (commands[st->state]->type == SQL_COMMAND)
{
if (debug)
fprintf(stderr, "client %d receiving\n", st->id);
if (!PQconsumeInput(st->con))
{ /* there's something wrong */
fprintf(stderr, "Client %d aborted in state %d. Probably the backend died while processing.\n", st->id, st->state);
return clientDone(st, false);
}
if (PQisBusy(st->con))
return true; /* don't have the whole result yet */
}
/*
* command finished: accumulate per-command execution times in
* thread-local data structure, if per-command latencies are requested
*/
if (is_latencies)
{
int cnum = commands[st->state]->command_num;
if (!now_valid)
{
INSTR_TIME_SET_CURRENT(now);
now_valid = true;
}
INSTR_TIME_ACCUM_DIFF(thread->exec_elapsed[cnum],
now, st->stmt_begin);
thread->exec_count[cnum]++;
}
/* transaction finished: record latency under progress or throttling */
if ((progress || throttle_delay) && commands[st->state + 1] == NULL)
{
int64 latency;
if (!now_valid)
{
INSTR_TIME_SET_CURRENT(now);
now_valid = true;
}
latency = INSTR_TIME_GET_MICROSEC(now) - st->txn_scheduled;
st->txn_latencies += latency;
/*
* XXX In a long benchmark run of high-latency transactions, this
* int64 addition eventually overflows. For example, 100 threads
* running 10s transactions will overflow it in 2.56 hours. With
* a more-typical OLTP workload of .1s transactions, overflow
* would take 256 hours.
*/
st->txn_sqlats += latency * latency;
}
/*
* if transaction finished, record the time it took in the log
*/
if (logfile && commands[st->state + 1] == NULL)
{
double lag;
double latency;
/*
* write the log entry if this row belongs to the random sample,
* or no sampling rate was given which means log everything.
*/
if (sample_rate == 0.0 ||
pg_erand48(thread->random_state) <= sample_rate)
{
if (!now_valid)
{
INSTR_TIME_SET_CURRENT(now);
now_valid = true;
}
latency = (double) (INSTR_TIME_GET_MICROSEC(now) - st->txn_scheduled);
lag = (double) (INSTR_TIME_GET_MICROSEC(st->txn_begin) - st->txn_scheduled);
/* should we aggregate the results or not? */
if (agg_interval > 0)
{
/*
* are we still in the same interval? if yes, accumulate
* the values (print them otherwise)
*/
if (agg->start_time + agg_interval >= INSTR_TIME_GET_DOUBLE(now))
{
agg->cnt += 1;
agg->sum_latency += latency;
agg->sum2_latency += latency * latency;
/* first in this aggregation interval */
if ((agg->cnt == 1) || (latency < agg->min_latency))
agg->min_latency = latency;
if ((agg->cnt == 1) || (latency > agg->max_latency))
agg->max_latency = latency;
/* and the same for schedule lag */
if (throttle_delay)
{
agg->sum_lag += lag;
agg->sum2_lag += lag * lag;
if ((agg->cnt == 1) || (lag < agg->min_lag))
agg->min_lag = lag;
if ((agg->cnt == 1) || (lag > agg->max_lag))
agg->max_lag = lag;
}
}
else
{
/*
* Loop until we reach the interval of the current
* transaction (and print all the empty intervals in
* between).
*/
while (agg->start_time + agg_interval < INSTR_TIME_GET_DOUBLE(now))
{
/*
* This is a non-Windows branch (thanks to the
* ifdef in usage), so we don't need to handle
* this in a special way (see below).
*/
fprintf(logfile, "%ld %d %.0f %.0f %.0f %.0f",
agg->start_time,
agg->cnt,
agg->sum_latency,
agg->sum2_latency,
agg->min_latency,
agg->max_latency);
if (throttle_delay)
fprintf(logfile, " %.0f %.0f %.0f %.0f",
agg->sum_lag,
agg->sum2_lag,
agg->min_lag,
agg->max_lag);
fputc('\n', logfile);
/* move to the next inteval */
agg->start_time = agg->start_time + agg_interval;
/* reset for "no transaction" intervals */
agg->cnt = 0;
agg->min_latency = 0;
agg->max_latency = 0;
agg->sum_latency = 0;
agg->sum2_latency = 0;
agg->min_lag = 0;
agg->max_lag = 0;
agg->sum_lag = 0;
agg->sum2_lag = 0;
}
/*
* and now update the reset values (include the
* current)
*/
agg->cnt = 1;
agg->min_latency = latency;
agg->max_latency = latency;
agg->sum_latency = latency;
agg->sum2_latency = latency * latency;
agg->min_lag = lag;
agg->max_lag = lag;
agg->sum_lag = lag;
agg->sum2_lag = lag * lag;
}
}
else
{
/* no, print raw transactions */
#ifndef WIN32
/*
* This is more than we really ought to know about
* instr_time
*/
fprintf(logfile, "%d %d %.0f %d %ld %ld",
st->id, st->cnt, latency, st->use_file,
(long) now.tv_sec, (long) now.tv_usec);
#else
/*
* On Windows, instr_time doesn't provide a timestamp
* anyway
*/
fprintf(logfile, "%d %d %.0f %d 0 0",
st->id, st->cnt, latency, st->use_file);
#endif
if (throttle_delay)
fprintf(logfile, " %.0f", lag);
fputc('\n', logfile);
}
}
}
if (commands[st->state]->type == SQL_COMMAND)
{
/*
* Read and discard the query result; note this is not included in
* the statement latency numbers.
*/
res = PQgetResult(st->con);
switch (PQresultStatus(res))
{
case PGRES_COMMAND_OK:
case PGRES_TUPLES_OK:
break; /* OK */
default:
fprintf(stderr, "Client %d aborted in state %d: %s",
st->id, st->state, PQerrorMessage(st->con));
PQclear(res);
return clientDone(st, false);
}
PQclear(res);
discard_response(st);
}
if (commands[st->state + 1] == NULL)
{
if (is_connect)
{
PQfinish(st->con);
st->con = NULL;
}
++st->cnt;
if ((st->cnt >= nxacts && duration <= 0) || timer_exceeded)
return clientDone(st, true); /* exit success */
}
/* increment state counter */
st->state++;
if (commands[st->state] == NULL)
{
st->state = 0;
st->use_file = (int) getrand(thread, 0, num_files - 1);
commands = sql_files[st->use_file];
st->is_throttled = false;
/*
* No transaction is underway anymore, which means there is
* nothing to listen to right now. When throttling rate limits
* are active, a sleep will happen next, as the next transaction
* starts. And then in any case the next SQL command will set
* listen back to 1.
*/
st->listen = 0;
trans_needs_throttle = (throttle_delay > 0);
}
}
if (st->con == NULL)
{
instr_time start,
end;
INSTR_TIME_SET_CURRENT(start);
if ((st->con = doConnect()) == NULL)
{
fprintf(stderr, "Client %d aborted in establishing connection.\n", st->id);
return clientDone(st, false);
}
INSTR_TIME_SET_CURRENT(end);
INSTR_TIME_ACCUM_DIFF(*conn_time, end, start);
}
/*
* This ensures that a throttling delay is inserted before proceeding with
* sql commands, after the first transaction. The first transaction
* throttling is performed when first entering doCustom.
*/
if (trans_needs_throttle)
{
trans_needs_throttle = false;
goto top;
}
/* Record transaction start time under logging, progress or throttling */
if ((logfile || progress || throttle_delay) && st->state == 0)
{
INSTR_TIME_SET_CURRENT(st->txn_begin);
/*
* When not throttling, this is also the transaction's scheduled start
* time.
*/
if (!throttle_delay)
st->txn_scheduled = INSTR_TIME_GET_MICROSEC(st->txn_begin);
}
/* Record statement start time if per-command latencies are requested */
if (is_latencies)
INSTR_TIME_SET_CURRENT(st->stmt_begin);
if (commands[st->state]->type == SQL_COMMAND)
{
const Command *command = commands[st->state];
int r;
if (querymode == QUERY_SIMPLE)
{
char *sql;
sql = pg_strdup(command->argv[0]);
sql = assignVariables(st, sql);
if (debug)
fprintf(stderr, "client %d sending %s\n", st->id, sql);
r = PQsendQuery(st->con, sql);
free(sql);
}
else if (querymode == QUERY_EXTENDED)
{
const char *sql = command->argv[0];
const char *params[MAX_ARGS];
getQueryParams(st, command, params);
if (debug)
fprintf(stderr, "client %d sending %s\n", st->id, sql);
r = PQsendQueryParams(st->con, sql, command->argc - 1,
NULL, params, NULL, NULL, 0);
}
else if (querymode == QUERY_PREPARED)
{
char name[MAX_PREPARE_NAME];
const char *params[MAX_ARGS];
if (!st->prepared[st->use_file])
{
int j;
for (j = 0; commands[j] != NULL; j++)
{
PGresult *res;
char name[MAX_PREPARE_NAME];
if (commands[j]->type != SQL_COMMAND)
continue;
preparedStatementName(name, st->use_file, j);
res = PQprepare(st->con, name,
commands[j]->argv[0], commands[j]->argc - 1, NULL);
if (PQresultStatus(res) != PGRES_COMMAND_OK)
fprintf(stderr, "%s", PQerrorMessage(st->con));
PQclear(res);
}
st->prepared[st->use_file] = true;
}
getQueryParams(st, command, params);
preparedStatementName(name, st->use_file, st->state);
if (debug)
fprintf(stderr, "client %d sending %s\n", st->id, name);
r = PQsendQueryPrepared(st->con, name, command->argc - 1,
params, NULL, NULL, 0);
}
else /* unknown sql mode */
r = 0;
if (r == 0)
{
if (debug)
fprintf(stderr, "client %d cannot send %s\n", st->id, command->argv[0]);
st->ecnt++;
}
else
st->listen = 1; /* flags that should be listened */
}
else if (commands[st->state]->type == META_COMMAND)
{
int argc = commands[st->state]->argc,
i;
char **argv = commands[st->state]->argv;
if (debug)
{
fprintf(stderr, "client %d executing \\%s", st->id, argv[0]);
for (i = 1; i < argc; i++)
fprintf(stderr, " %s", argv[i]);
fprintf(stderr, "\n");
}
if (pg_strcasecmp(argv[0], "setrandom") == 0)
{
char *var;
int64 min,
max;
double threshold = 0;
char res[64];
if (*argv[2] == ':')
{
if ((var = getVariable(st, argv[2] + 1)) == NULL)
{
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[2]);
st->ecnt++;
return true;
}
min = strtoint64(var);
}
else
min = strtoint64(argv[2]);
#ifdef NOT_USED
if (min < 0)
{
fprintf(stderr, "%s: invalid minimum number %d\n", argv[0], min);
st->ecnt++;
return;
}
#endif
if (*argv[3] == ':')
{
if ((var = getVariable(st, argv[3] + 1)) == NULL)
{
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[3]);
st->ecnt++;
return true;
}
max = strtoint64(var);
}
else
max = strtoint64(argv[3]);
if (max < min)
{
fprintf(stderr, "%s: maximum is less than minimum\n", argv[0]);
st->ecnt++;
return true;
}
/*
* Generate random number functions need to be able to subtract
* max from min and add one to the result without overflowing.
* Since we know max > min, we can detect overflow just by checking
* for a negative result. But we must check both that the subtraction
* doesn't overflow, and that adding one to the result doesn't overflow either.
*/
if (max - min < 0 || (max - min) + 1 < 0)
{
fprintf(stderr, "%s: range too large\n", argv[0]);
st->ecnt++;
return true;
}
if (argc == 4 || /* uniform without or with "uniform" keyword */
(argc == 5 && pg_strcasecmp(argv[4], "uniform") == 0))
{
#ifdef DEBUG
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getrand(thread, min, max));
#endif
snprintf(res, sizeof(res), INT64_FORMAT, getrand(thread, min, max));
}
else if (argc == 6 &&
((pg_strcasecmp(argv[4], "gaussian") == 0) ||
(pg_strcasecmp(argv[4], "exponential") == 0)))
{
if (*argv[5] == ':')
{
if ((var = getVariable(st, argv[5] + 1)) == NULL)
{
fprintf(stderr, "%s: invalid threshold number %s\n", argv[0], argv[5]);
st->ecnt++;
return true;
}
threshold = strtod(var, NULL);
}
else
threshold = strtod(argv[5], NULL);
if (pg_strcasecmp(argv[4], "gaussian") == 0)
{
if (threshold < MIN_GAUSSIAN_THRESHOLD)
{
fprintf(stderr, "%s: gaussian threshold must be at least %f\n,", argv[5], MIN_GAUSSIAN_THRESHOLD);
st->ecnt++;
return true;
}
#ifdef DEBUG
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getGaussianRand(thread, min, max, threshold));
#endif
snprintf(res, sizeof(res), INT64_FORMAT, getGaussianRand(thread, min, max, threshold));
}
else if (pg_strcasecmp(argv[4], "exponential") == 0)
{
if (threshold <= 0.0)
{
fprintf(stderr, "%s: exponential threshold must be strictly positive\n,", argv[5]);
st->ecnt++;
return true;
}
#ifdef DEBUG
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getExponentialRand(thread, min, max, threshold));
#endif
snprintf(res, sizeof(res), INT64_FORMAT, getExponentialRand(thread, min, max, threshold));
}
}
else /* this means an error somewhere in the parsing phase... */
{
fprintf(stderr, "%s: unexpected arguments\n", argv[0]);
st->ecnt++;
return true;
}
if (!putVariable(st, argv[0], argv[1], res))
{
st->ecnt++;
return true;
}
st->listen = 1;
}
else if (pg_strcasecmp(argv[0], "set") == 0)
{
char *var;
int64 ope1,
ope2;
char res[64];
if (*argv[2] == ':')
{
if ((var = getVariable(st, argv[2] + 1)) == NULL)
{
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[2]);
st->ecnt++;
return true;
}
ope1 = strtoint64(var);
}
else
ope1 = strtoint64(argv[2]);
if (argc < 5)
snprintf(res, sizeof(res), INT64_FORMAT, ope1);
else
{
if (*argv[4] == ':')
{
if ((var = getVariable(st, argv[4] + 1)) == NULL)
{
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[4]);
st->ecnt++;
return true;
}
ope2 = strtoint64(var);
}
else
ope2 = strtoint64(argv[4]);
if (strcmp(argv[3], "+") == 0)
snprintf(res, sizeof(res), INT64_FORMAT, ope1 + ope2);
else if (strcmp(argv[3], "-") == 0)
snprintf(res, sizeof(res), INT64_FORMAT, ope1 - ope2);
else if (strcmp(argv[3], "*") == 0)
snprintf(res, sizeof(res), INT64_FORMAT, ope1 * ope2);
else if (strcmp(argv[3], "/") == 0)
{
if (ope2 == 0)
{
fprintf(stderr, "%s: division by zero\n", argv[0]);
st->ecnt++;
return true;
}
snprintf(res, sizeof(res), INT64_FORMAT, ope1 / ope2);
}
else
{
fprintf(stderr, "%s: unsupported operator %s\n", argv[0], argv[3]);
st->ecnt++;
return true;
}
}
if (!putVariable(st, argv[0], argv[1], res))
{
st->ecnt++;
return true;
}
st->listen = 1;
}
else if (pg_strcasecmp(argv[0], "sleep") == 0)
{
char *var;
int usec;
instr_time now;
if (*argv[1] == ':')
{
if ((var = getVariable(st, argv[1] + 1)) == NULL)
{
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[1]);
st->ecnt++;
return true;
}
usec = atoi(var);
}
else
usec = atoi(argv[1]);
if (argc > 2)
{
if (pg_strcasecmp(argv[2], "ms") == 0)
usec *= 1000;
else if (pg_strcasecmp(argv[2], "s") == 0)
usec *= 1000000;
}
else
usec *= 1000000;
INSTR_TIME_SET_CURRENT(now);
st->txn_scheduled = INSTR_TIME_GET_MICROSEC(now) + usec;
st->sleeping = 1;
st->listen = 1;
}
else if (pg_strcasecmp(argv[0], "setshell") == 0)
{
bool ret = runShellCommand(st, argv[1], argv + 2, argc - 2);
if (timer_exceeded) /* timeout */
return clientDone(st, true);
else if (!ret) /* on error */
{
st->ecnt++;
return true;
}
else /* succeeded */
st->listen = 1;
}
else if (pg_strcasecmp(argv[0], "shell") == 0)
{
bool ret = runShellCommand(st, NULL, argv + 1, argc - 1);
if (timer_exceeded) /* timeout */
return clientDone(st, true);
else if (!ret) /* on error */
{
st->ecnt++;
return true;
}
else /* succeeded */
st->listen = 1;
}
goto top;
}
return true;
}
/* discard connections */
static void
disconnect_all(CState *state, int length)
{
int i;
for (i = 0; i < length; i++)
{
if (state[i].con)
{
PQfinish(state[i].con);
state[i].con = NULL;
}
}
}
/* create tables and setup data */
static void
init(bool is_no_vacuum)
{
/*
* The scale factor at/beyond which 32-bit integers are insufficient for
* storing TPC-B account IDs.
*
* Although the actual threshold is 21474, we use 20000 because it is easier to
* document and remember, and isn't that far away from the real threshold.
*/
#define SCALE_32BIT_THRESHOLD 20000
/*
* Note: TPC-B requires at least 100 bytes per row, and the "filler"
* fields in these table declarations were intended to comply with that.
* The pgbench_accounts table complies with that because the "filler"
* column is set to blank-padded empty string. But for all other tables
* the columns default to NULL and so don't actually take any space. We
* could fix that by giving them non-null default values. However, that
* would completely break comparability of pgbench results with prior
* versions. Since pgbench has never pretended to be fully TPC-B compliant
* anyway, we stick with the historical behavior.
*/
struct ddlinfo
{
const char *table; /* table name */
const char *smcols; /* column decls if accountIDs are 32 bits */
const char *bigcols; /* column decls if accountIDs are 64 bits */
int declare_fillfactor;
};
static const struct ddlinfo DDLs[] = {
{
"pgbench_history",
"tid int,bid int,aid int,delta int,mtime timestamp,filler char(22)",
"tid int,bid int,aid bigint,delta int,mtime timestamp,filler char(22)",
0
},
{
"pgbench_tellers",
"tid int not null,bid int,tbalance int,filler char(84)",
"tid int not null,bid int,tbalance int,filler char(84)",
1
},
{
"pgbench_accounts",
"aid int not null,bid int,abalance int,filler char(84)",
"aid bigint not null,bid int,abalance int,filler char(84)",
1
},
{
"pgbench_branches",
"bid int not null,bbalance int,filler char(88)",
"bid int not null,bbalance int,filler char(88)",
1
}
};
static const char *const DDLINDEXes[] = {
"alter table pgbench_branches add primary key (bid)",
"alter table pgbench_tellers add primary key (tid)",
"alter table pgbench_accounts add primary key (aid)"
};
static const char *const DDLKEYs[] = {
"alter table pgbench_tellers add foreign key (bid) references pgbench_branches",
"alter table pgbench_accounts add foreign key (bid) references pgbench_branches",
"alter table pgbench_history add foreign key (bid) references pgbench_branches",
"alter table pgbench_history add foreign key (tid) references pgbench_tellers",
"alter table pgbench_history add foreign key (aid) references pgbench_accounts"
};
PGconn *con;
PGresult *res;
char sql[256];
int i;
int64 k;
/* used to track elapsed time and estimate of the remaining time */
instr_time start,
diff;
double elapsed_sec,
remaining_sec;
int log_interval = 1;
if ((con = doConnect()) == NULL)
exit(1);
for (i = 0; i < lengthof(DDLs); i++)
{
char opts[256];
char buffer[256];
const struct ddlinfo *ddl = &DDLs[i];
const char *cols;
/* Remove old table, if it exists. */
snprintf(buffer, sizeof(buffer), "drop table if exists %s", ddl->table);
executeStatement(con, buffer);
/* Construct new create table statement. */
opts[0] = '\0';
if (ddl->declare_fillfactor)
snprintf(opts + strlen(opts), sizeof(opts) - strlen(opts),
" with (fillfactor=%d)", fillfactor);
if (tablespace != NULL)
{
char *escape_tablespace;
escape_tablespace = PQescapeIdentifier(con, tablespace,
strlen(tablespace));
snprintf(opts + strlen(opts), sizeof(opts) - strlen(opts),
" tablespace %s", escape_tablespace);
PQfreemem(escape_tablespace);
}
cols = (scale >= SCALE_32BIT_THRESHOLD) ? ddl->bigcols : ddl->smcols;
snprintf(buffer, sizeof(buffer), "create%s table %s(%s)%s",
unlogged_tables ? " unlogged" : "",
ddl->table, cols, opts);
executeStatement(con, buffer);
}
executeStatement(con, "begin");
for (i = 0; i < nbranches * scale; i++)
{
/* "filler" column defaults to NULL */
snprintf(sql, sizeof(sql),
"insert into pgbench_branches(bid,bbalance) values(%d,0)",
i + 1);
executeStatement(con, sql);
}
for (i = 0; i < ntellers * scale; i++)
{
/* "filler" column defaults to NULL */
snprintf(sql, sizeof(sql),
"insert into pgbench_tellers(tid,bid,tbalance) values (%d,%d,0)",
i + 1, i / ntellers + 1);
executeStatement(con, sql);
}
executeStatement(con, "commit");
/*
* fill the pgbench_accounts table with some data
*/
fprintf(stderr, "creating tables...\n");
executeStatement(con, "begin");
executeStatement(con, "truncate pgbench_accounts");
res = PQexec(con, "copy pgbench_accounts from stdin");
if (PQresultStatus(res) != PGRES_COPY_IN)
{
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
PQclear(res);
INSTR_TIME_SET_CURRENT(start);
for (k = 0; k < (int64) naccounts * scale; k++)
{
int64 j = k + 1;
/* "filler" column defaults to blank padded empty string */
snprintf(sql, sizeof(sql),
INT64_FORMAT "\t" INT64_FORMAT "\t%d\t\n",
j, k / naccounts + 1, 0);
if (PQputline(con, sql))
{
fprintf(stderr, "PQputline failed\n");
exit(1);
}
/*
* If we want to stick with the original logging, print a message each
* 100k inserted rows.
*/
if ((!use_quiet) && (j % 100000 == 0))
{
INSTR_TIME_SET_CURRENT(diff);
INSTR_TIME_SUBTRACT(diff, start);
elapsed_sec = INSTR_TIME_GET_DOUBLE(diff);
remaining_sec = ((double) scale * naccounts - j) * elapsed_sec / j;
fprintf(stderr, INT64_FORMAT " of " INT64_FORMAT " tuples (%d%%) done (elapsed %.2f s, remaining %.2f s).\n",
j, (int64) naccounts * scale,
(int) (((int64) j * 100) / (naccounts * (int64) scale)),
elapsed_sec, remaining_sec);
}
/* let's not call the timing for each row, but only each 100 rows */
else if (use_quiet && (j % 100 == 0))
{
INSTR_TIME_SET_CURRENT(diff);
INSTR_TIME_SUBTRACT(diff, start);
elapsed_sec = INSTR_TIME_GET_DOUBLE(diff);
remaining_sec = ((double) scale * naccounts - j) * elapsed_sec / j;
/* have we reached the next interval (or end)? */
if ((j == scale * naccounts) || (elapsed_sec >= log_interval * LOG_STEP_SECONDS))
{
fprintf(stderr, INT64_FORMAT " of " INT64_FORMAT " tuples (%d%%) done (elapsed %.2f s, remaining %.2f s).\n",
j, (int64) naccounts * scale,
(int) (((int64) j * 100) / (naccounts * (int64) scale)), elapsed_sec, remaining_sec);
/* skip to the next interval */
log_interval = (int) ceil(elapsed_sec / LOG_STEP_SECONDS);
}
}
}
if (PQputline(con, "\\.\n"))
{
fprintf(stderr, "very last PQputline failed\n");
exit(1);
}
if (PQendcopy(con))
{
fprintf(stderr, "PQendcopy failed\n");
exit(1);
}
executeStatement(con, "commit");
/* vacuum */
if (!is_no_vacuum)
{
fprintf(stderr, "vacuum...\n");
executeStatement(con, "vacuum analyze pgbench_branches");
executeStatement(con, "vacuum analyze pgbench_tellers");
executeStatement(con, "vacuum analyze pgbench_accounts");
executeStatement(con, "vacuum analyze pgbench_history");
}
/*
* create indexes
*/
fprintf(stderr, "set primary keys...\n");
for (i = 0; i < lengthof(DDLINDEXes); i++)
{
char buffer[256];
strlcpy(buffer, DDLINDEXes[i], sizeof(buffer));
if (index_tablespace != NULL)
{
char *escape_tablespace;
escape_tablespace = PQescapeIdentifier(con, index_tablespace,
strlen(index_tablespace));
snprintf(buffer + strlen(buffer), sizeof(buffer) - strlen(buffer),
" using index tablespace %s", escape_tablespace);
PQfreemem(escape_tablespace);
}
executeStatement(con, buffer);
}
/*
* create foreign keys
*/
if (foreign_keys)
{
fprintf(stderr, "set foreign keys...\n");
for (i = 0; i < lengthof(DDLKEYs); i++)
{
executeStatement(con, DDLKEYs[i]);
}
}
fprintf(stderr, "done.\n");
PQfinish(con);
}
/*
* Parse the raw sql and replace :param to $n.
*/
static bool
parseQuery(Command *cmd, const char *raw_sql)
{
char *sql,
*p;
sql = pg_strdup(raw_sql);
cmd->argc = 1;
p = sql;
while ((p = strchr(p, ':')) != NULL)
{
char var[12];
char *name;
int eaten;
name = parseVariable(p, &eaten);
if (name == NULL)
{
while (*p == ':')
{
p++;
}
continue;
}
if (cmd->argc >= MAX_ARGS)
{
fprintf(stderr, "statement has too many arguments (maximum is %d): %s\n", MAX_ARGS - 1, raw_sql);
return false;
}
sprintf(var, "$%d", cmd->argc);
p = replaceVariable(&sql, p, eaten, var);
cmd->argv[cmd->argc] = name;
cmd->argc++;
}
cmd->argv[0] = sql;
return true;
}
/* Parse a command; return a Command struct, or NULL if it's a comment */
static Command *
process_commands(char *buf)
{
const char delim[] = " \f\n\r\t\v";
Command *my_commands;
int j;
char *p,
*tok;
/* Make the string buf end at the next newline */
if ((p = strchr(buf, '\n')) != NULL)
*p = '\0';
/* Skip leading whitespace */
p = buf;
while (isspace((unsigned char) *p))
p++;
/* If the line is empty or actually a comment, we're done */
if (*p == '\0' || strncmp(p, "--", 2) == 0)
return NULL;
/* Allocate and initialize Command structure */
my_commands = (Command *) pg_malloc(sizeof(Command));
my_commands->line = pg_strdup(buf);
my_commands->command_num = num_commands++;
my_commands->type = 0; /* until set */
my_commands->argc = 0;
if (*p == '\\')
{
my_commands->type = META_COMMAND;
j = 0;
tok = strtok(++p, delim);
while (tok != NULL)
{
my_commands->argv[j++] = pg_strdup(tok);
my_commands->argc++;
tok = strtok(NULL, delim);
}
if (pg_strcasecmp(my_commands->argv[0], "setrandom") == 0)
{
/* parsing:
* \setrandom variable min max [uniform]
* \setrandom variable min max (gaussian|exponential) threshold
*/
if (my_commands->argc < 4)
{
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
/* argc >= 4 */
if (my_commands->argc == 4 || /* uniform without/with "uniform" keyword */
(my_commands->argc == 5 &&
pg_strcasecmp(my_commands->argv[4], "uniform") == 0))
{
/* nothing to do */
}
else if (/* argc >= 5 */
(pg_strcasecmp(my_commands->argv[4], "gaussian") == 0) ||
(pg_strcasecmp(my_commands->argv[4], "exponential") == 0))
{
if (my_commands->argc < 6)
{
fprintf(stderr, "%s(%s): missing threshold argument\n", my_commands->argv[0], my_commands->argv[4]);
exit(1);
}
else if (my_commands->argc > 6)
{
fprintf(stderr, "%s(%s): too many arguments (extra:",
my_commands->argv[0], my_commands->argv[4]);
for (j = 6; j < my_commands->argc; j++)
fprintf(stderr, " %s", my_commands->argv[j]);
fprintf(stderr, ")\n");
exit(1);
}
}
else /* cannot parse, unexpected arguments */
{
fprintf(stderr, "%s: unexpected arguments (bad:", my_commands->argv[0]);
for (j = 4; j < my_commands->argc; j++)
fprintf(stderr, " %s", my_commands->argv[j]);
fprintf(stderr, ")\n");
exit(1);
}
}
else if (pg_strcasecmp(my_commands->argv[0], "set") == 0)
{
if (my_commands->argc < 3)
{
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
for (j = my_commands->argc < 5 ? 3 : 5; j < my_commands->argc; j++)
fprintf(stderr, "%s: extra argument \"%s\" ignored\n",
my_commands->argv[0], my_commands->argv[j]);
}
else if (pg_strcasecmp(my_commands->argv[0], "sleep") == 0)
{
if (my_commands->argc < 2)
{
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
/*
* Split argument into number and unit to allow "sleep 1ms" etc.
* We don't have to terminate the number argument with null
* because it will be parsed with atoi, which ignores trailing
* non-digit characters.
*/
if (my_commands->argv[1][0] != ':')
{
char *c = my_commands->argv[1];
while (isdigit((unsigned char) *c))
c++;
if (*c)
{
my_commands->argv[2] = c;
if (my_commands->argc < 3)
my_commands->argc = 3;
}
}
if (my_commands->argc >= 3)
{
if (pg_strcasecmp(my_commands->argv[2], "us") != 0 &&
pg_strcasecmp(my_commands->argv[2], "ms") != 0 &&
pg_strcasecmp(my_commands->argv[2], "s") != 0)
{
fprintf(stderr, "%s: unknown time unit '%s' - must be us, ms or s\n",
my_commands->argv[0], my_commands->argv[2]);
exit(1);
}
}
for (j = 3; j < my_commands->argc; j++)
fprintf(stderr, "%s: extra argument \"%s\" ignored\n",
my_commands->argv[0], my_commands->argv[j]);
}
else if (pg_strcasecmp(my_commands->argv[0], "setshell") == 0)
{
if (my_commands->argc < 3)
{
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
}
else if (pg_strcasecmp(my_commands->argv[0], "shell") == 0)
{
if (my_commands->argc < 1)
{
fprintf(stderr, "%s: missing command\n", my_commands->argv[0]);
exit(1);
}
}
else
{
fprintf(stderr, "Invalid command %s\n", my_commands->argv[0]);
exit(1);
}
}
else
{
my_commands->type = SQL_COMMAND;
switch (querymode)
{
case QUERY_SIMPLE:
my_commands->argv[0] = pg_strdup(p);
my_commands->argc++;
break;
case QUERY_EXTENDED:
case QUERY_PREPARED:
if (!parseQuery(my_commands, p))
exit(1);
break;
default:
exit(1);
}
}
return my_commands;
}
/*
* Read a line from fd, and return it in a malloc'd buffer.
* Return NULL at EOF.
*
* The buffer will typically be larger than necessary, but we don't care
* in this program, because we'll free it as soon as we've parsed the line.
*/
static char *
read_line_from_file(FILE *fd)
{
char tmpbuf[BUFSIZ];
char *buf;
size_t buflen = BUFSIZ;
size_t used = 0;
buf = (char *) palloc(buflen);
buf[0] = '\0';
while (fgets(tmpbuf, BUFSIZ, fd) != NULL)
{
size_t thislen = strlen(tmpbuf);
/* Append tmpbuf to whatever we had already */
memcpy(buf + used, tmpbuf, thislen + 1);
used += thislen;
/* Done if we collected a newline */
if (thislen > 0 && tmpbuf[thislen - 1] == '\n')
break;
/* Else, enlarge buf to ensure we can append next bufferload */
buflen += BUFSIZ;
buf = (char *) pg_realloc(buf, buflen);
}
if (used > 0)
return buf;
/* Reached EOF */
free(buf);
return NULL;
}
static int
process_file(char *filename)
{
#define COMMANDS_ALLOC_NUM 128
Command **my_commands;
FILE *fd;
int lineno;
char *buf;
int alloc_num;
if (num_files >= MAX_FILES)
{
fprintf(stderr, "Up to only %d SQL files are allowed\n", MAX_FILES);
exit(1);
}
alloc_num = COMMANDS_ALLOC_NUM;
my_commands = (Command **) pg_malloc(sizeof(Command *) * alloc_num);
if (strcmp(filename, "-") == 0)
fd = stdin;
else if ((fd = fopen(filename, "r")) == NULL)
{
fprintf(stderr, "%s: %s\n", filename, strerror(errno));
return false;
}
lineno = 0;
while ((buf = read_line_from_file(fd)) != NULL)
{
Command *command;
command = process_commands(buf);
free(buf);
if (command == NULL)
continue;
my_commands[lineno] = command;
lineno++;
if (lineno >= alloc_num)
{
alloc_num += COMMANDS_ALLOC_NUM;
my_commands = pg_realloc(my_commands, sizeof(Command *) * alloc_num);
}
}
fclose(fd);
my_commands[lineno] = NULL;
sql_files[num_files++] = my_commands;
return true;
}
static Command **
process_builtin(char *tb)
{
#define COMMANDS_ALLOC_NUM 128
Command **my_commands;
int lineno;
char buf[BUFSIZ];
int alloc_num;
alloc_num = COMMANDS_ALLOC_NUM;
my_commands = (Command **) pg_malloc(sizeof(Command *) * alloc_num);
lineno = 0;
for (;;)
{
char *p;
Command *command;
p = buf;
while (*tb && *tb != '\n')
*p++ = *tb++;
if (*tb == '\0')
break;
if (*tb == '\n')
tb++;
*p = '\0';
command = process_commands(buf);
if (command == NULL)
continue;
my_commands[lineno] = command;
lineno++;
if (lineno >= alloc_num)
{
alloc_num += COMMANDS_ALLOC_NUM;
my_commands = pg_realloc(my_commands, sizeof(Command *) * alloc_num);
}
}
my_commands[lineno] = NULL;
return my_commands;
}
/* print out results */
static void
printResults(int ttype, int64 normal_xacts, int nclients,
TState *threads, int nthreads,
instr_time total_time, instr_time conn_total_time,
int64 total_latencies, int64 total_sqlats,
int64 throttle_lag, int64 throttle_lag_max)
{
double time_include,
tps_include,
tps_exclude;
char *s;
time_include = INSTR_TIME_GET_DOUBLE(total_time);
tps_include = normal_xacts / time_include;
tps_exclude = normal_xacts / (time_include -
(INSTR_TIME_GET_DOUBLE(conn_total_time) / nthreads));
if (ttype == 0)
s = "TPC-B (sort of)";
else if (ttype == 2)
s = "Update only pgbench_accounts";
else if (ttype == 1)
s = "SELECT only";
else
s = "Custom query";
printf("transaction type: %s\n", s);
printf("scaling factor: %d\n", scale);
printf("query mode: %s\n", QUERYMODE[querymode]);
printf("number of clients: %d\n", nclients);
printf("number of threads: %d\n", nthreads);
if (duration <= 0)
{
printf("number of transactions per client: %d\n", nxacts);
printf("number of transactions actually processed: " INT64_FORMAT "/" INT64_FORMAT "\n",
normal_xacts, (int64) nxacts * nclients);
}
else
{
printf("duration: %d s\n", duration);
printf("number of transactions actually processed: " INT64_FORMAT "\n",
normal_xacts);
}
if (throttle_delay || progress)
{
/* compute and show latency average and standard deviation */
double latency = 0.001 * total_latencies / normal_xacts;
double sqlat = (double) total_sqlats / normal_xacts;
printf("latency average: %.3f ms\n"
"latency stddev: %.3f ms\n",
latency, 0.001 * sqrt(sqlat - 1000000.0 * latency * latency));
}
else
{
/* only an average latency computed from the duration is available */
printf("latency average: %.3f ms\n",
1000.0 * duration * nclients / normal_xacts);
}
if (throttle_delay)
{
/*
* Report average transaction lag under rate limit throttling. This
* is the delay between scheduled and actual start times for the
* transaction. The measured lag may be caused by thread/client load,
* the database load, or the Poisson throttling process.
*/
printf("rate limit schedule lag: avg %.3f (max %.3f) ms\n",
0.001 * throttle_lag / normal_xacts, 0.001 * throttle_lag_max);
}
printf("tps = %f (including connections establishing)\n", tps_include);
printf("tps = %f (excluding connections establishing)\n", tps_exclude);
/* Report per-command latencies */
if (is_latencies)
{
int i;
for (i = 0; i < num_files; i++)
{
Command **commands;
if (num_files > 1)
printf("statement latencies in milliseconds, file %d:\n", i + 1);
else
printf("statement latencies in milliseconds:\n");
for (commands = sql_files[i]; *commands != NULL; commands++)
{
Command *command = *commands;
int cnum = command->command_num;
double total_time;
instr_time total_exec_elapsed;
int total_exec_count;
int t;
/* Accumulate per-thread data for command */
INSTR_TIME_SET_ZERO(total_exec_elapsed);
total_exec_count = 0;
for (t = 0; t < nthreads; t++)
{
TState *thread = &threads[t];
INSTR_TIME_ADD(total_exec_elapsed,
thread->exec_elapsed[cnum]);
total_exec_count += thread->exec_count[cnum];
}
if (total_exec_count > 0)
total_time = INSTR_TIME_GET_MILLISEC(total_exec_elapsed) / (double) total_exec_count;
else
total_time = 0.0;
printf("\t%f\t%s\n", total_time, command->line);
}
}
}
}
int
main(int argc, char **argv)
{
static struct option long_options[] = {
/* systematic long/short named options */
{"client", required_argument, NULL, 'c'},
{"connect", no_argument, NULL, 'C'},
{"debug", no_argument, NULL, 'd'},
{"define", required_argument, NULL, 'D'},
{"file", required_argument, NULL, 'f'},
{"fillfactor", required_argument, NULL, 'F'},
{"host", required_argument, NULL, 'h'},
{"initialize", no_argument, NULL, 'i'},
{"jobs", required_argument, NULL, 'j'},
{"log", no_argument, NULL, 'l'},
{"no-vacuum", no_argument, NULL, 'n'},
{"port", required_argument, NULL, 'p'},
{"progress", required_argument, NULL, 'P'},
{"protocol", required_argument, NULL, 'M'},
{"quiet", no_argument, NULL, 'q'},
{"report-latencies", no_argument, NULL, 'r'},
{"scale", required_argument, NULL, 's'},
{"select-only", no_argument, NULL, 'S'},
{"skip-some-updates", no_argument, NULL, 'N'},
{"time", required_argument, NULL, 'T'},
{"transactions", required_argument, NULL, 't'},
{"username", required_argument, NULL, 'U'},
{"vacuum-all", no_argument, NULL, 'v'},
/* long-named only options */
{"foreign-keys", no_argument, &foreign_keys, 1},
{"index-tablespace", required_argument, NULL, 3},
{"tablespace", required_argument, NULL, 2},
{"unlogged-tables", no_argument, &unlogged_tables, 1},
{"sampling-rate", required_argument, NULL, 4},
{"aggregate-interval", required_argument, NULL, 5},
{"rate", required_argument, NULL, 'R'},
{NULL, 0, NULL, 0}
};
int c;
int nclients = 1; /* default number of simulated clients */
int nthreads = 1; /* default number of threads */
int is_init_mode = 0; /* initialize mode? */
int is_no_vacuum = 0; /* no vacuum at all before testing? */
int do_vacuum_accounts = 0; /* do vacuum accounts before testing? */
int ttype = 0; /* transaction type. 0: TPC-B, 1: SELECT only,
* 2: skip update of branches and tellers */
int optindex;
char *filename = NULL;
bool scale_given = false;
bool benchmarking_option_set = false;
bool initialization_option_set = false;
CState *state; /* status of clients */
TState *threads; /* array of thread */
instr_time start_time; /* start up time */
instr_time total_time;
instr_time conn_total_time;
int64 total_xacts = 0;
int64 total_latencies = 0;
int64 total_sqlats = 0;
int64 throttle_lag = 0;
int64 throttle_lag_max = 0;
int i;
#ifdef HAVE_GETRLIMIT
struct rlimit rlim;
#endif
PGconn *con;
PGresult *res;
char *env;
char val[64];
progname = get_progname(argv[0]);
if (argc > 1)
{
if (strcmp(argv[1], "--help") == 0 || strcmp(argv[1], "-?") == 0)
{
usage();
exit(0);
}
if (strcmp(argv[1], "--version") == 0 || strcmp(argv[1], "-V") == 0)
{
puts("pgbench (PostgreSQL) " PG_VERSION);
exit(0);
}
}
#ifdef WIN32
/* stderr is buffered on Win32. */
setvbuf(stderr, NULL, _IONBF, 0);
#endif
if ((env = getenv("PGHOST")) != NULL && *env != '\0')
pghost = env;
if ((env = getenv("PGPORT")) != NULL && *env != '\0')
pgport = env;
else if ((env = getenv("PGUSER")) != NULL && *env != '\0')
login = env;
state = (CState *) pg_malloc(sizeof(CState));
memset(state, 0, sizeof(CState));
while ((c = getopt_long(argc, argv, "ih:nvp:dqSNc:j:Crs:t:T:U:lf:D:F:M:P:R:", long_options, &optindex)) != -1)
{
switch (c)
{
case 'i':
is_init_mode++;
break;
case 'h':
pghost = pg_strdup(optarg);
break;
case 'n':
is_no_vacuum++;
break;
case 'v':
do_vacuum_accounts++;
break;
case 'p':
pgport = pg_strdup(optarg);
break;
case 'd':
debug++;
break;
case 'S':
ttype = 1;
benchmarking_option_set = true;
break;
case 'N':
ttype = 2;
benchmarking_option_set = true;
break;
case 'c':
benchmarking_option_set = true;
nclients = atoi(optarg);
if (nclients <= 0 || nclients > MAXCLIENTS)
{
fprintf(stderr, "invalid number of clients: %d\n", nclients);
exit(1);
}
#ifdef HAVE_GETRLIMIT
#ifdef RLIMIT_NOFILE /* most platforms use RLIMIT_NOFILE */
if (getrlimit(RLIMIT_NOFILE, &rlim) == -1)
#else /* but BSD doesn't ... */
if (getrlimit(RLIMIT_OFILE, &rlim) == -1)
#endif /* RLIMIT_NOFILE */
{
fprintf(stderr, "getrlimit failed: %s\n", strerror(errno));
exit(1);
}
if (rlim.rlim_cur <= (nclients + 2))
{
fprintf(stderr, "You need at least %d open files but you are only allowed to use %ld.\n", nclients + 2, (long) rlim.rlim_cur);
fprintf(stderr, "Use limit/ulimit to increase the limit before using pgbench.\n");
exit(1);
}
#endif /* HAVE_GETRLIMIT */
break;
case 'j': /* jobs */
benchmarking_option_set = true;
nthreads = atoi(optarg);
if (nthreads <= 0)
{
fprintf(stderr, "invalid number of threads: %d\n", nthreads);
exit(1);
}
break;
case 'C':
benchmarking_option_set = true;
is_connect = true;
break;
case 'r':
benchmarking_option_set = true;
is_latencies = true;
break;
case 's':
scale_given = true;
scale = atoi(optarg);
if (scale <= 0)
{
fprintf(stderr, "invalid scaling factor: %d\n", scale);
exit(1);
}
break;
case 't':
benchmarking_option_set = true;
if (duration > 0)
{
fprintf(stderr, "specify either a number of transactions (-t) or a duration (-T), not both.\n");
exit(1);
}
nxacts = atoi(optarg);
if (nxacts <= 0)
{
fprintf(stderr, "invalid number of transactions: %d\n", nxacts);
exit(1);
}
break;
case 'T':
benchmarking_option_set = true;
if (nxacts > 0)
{
fprintf(stderr, "specify either a number of transactions (-t) or a duration (-T), not both.\n");
exit(1);
}
duration = atoi(optarg);
if (duration <= 0)
{
fprintf(stderr, "invalid duration: %d\n", duration);
exit(1);
}
break;
case 'U':
login = pg_strdup(optarg);
break;
case 'l':
benchmarking_option_set = true;
use_log = true;
break;
case 'q':
initialization_option_set = true;
use_quiet = true;
break;
case 'f':
benchmarking_option_set = true;
ttype = 3;
filename = pg_strdup(optarg);
if (process_file(filename) == false || *sql_files[num_files - 1] == NULL)
exit(1);
break;
case 'D':
{
char *p;
benchmarking_option_set = true;
if ((p = strchr(optarg, '=')) == NULL || p == optarg || *(p + 1) == '\0')
{
fprintf(stderr, "invalid variable definition: %s\n", optarg);
exit(1);
}
*p++ = '\0';
if (!putVariable(&state[0], "option", optarg, p))
exit(1);
}
break;
case 'F':
initialization_option_set = true;
fillfactor = atoi(optarg);
if ((fillfactor < 10) || (fillfactor > 100))
{
fprintf(stderr, "invalid fillfactor: %d\n", fillfactor);
exit(1);
}
break;
case 'M':
benchmarking_option_set = true;
if (num_files > 0)
{
fprintf(stderr, "query mode (-M) should be specifiled before transaction scripts (-f)\n");
exit(1);
}
for (querymode = 0; querymode < NUM_QUERYMODE; querymode++)
if (strcmp(optarg, QUERYMODE[querymode]) == 0)
break;
if (querymode >= NUM_QUERYMODE)
{
fprintf(stderr, "invalid query mode (-M): %s\n", optarg);
exit(1);
}
break;
case 'P':
benchmarking_option_set = true;
progress = atoi(optarg);
if (progress <= 0)
{
fprintf(stderr,
"thread progress delay (-P) must be positive (%s)\n",
optarg);
exit(1);
}
break;
case 'R':
{
/* get a double from the beginning of option value */
double throttle_value = atof(optarg);
benchmarking_option_set = true;
if (throttle_value <= 0.0)
{
fprintf(stderr, "invalid rate limit: %s\n", optarg);
exit(1);
}
/* Invert rate limit into a time offset */
throttle_delay = (int64) (1000000.0 / throttle_value);
}
break;
case 0:
/* This covers long options which take no argument. */
if (foreign_keys || unlogged_tables)
initialization_option_set = true;
break;
case 2: /* tablespace */
initialization_option_set = true;
tablespace = pg_strdup(optarg);
break;
case 3: /* index-tablespace */
initialization_option_set = true;
index_tablespace = pg_strdup(optarg);
break;
case 4:
benchmarking_option_set = true;
sample_rate = atof(optarg);
if (sample_rate <= 0.0 || sample_rate > 1.0)
{
fprintf(stderr, "invalid sampling rate: %f\n", sample_rate);
exit(1);
}
break;
case 5:
#ifdef WIN32
fprintf(stderr, "--aggregate-interval is not currently supported on Windows");
exit(1);
#else
benchmarking_option_set = true;
agg_interval = atoi(optarg);
if (agg_interval <= 0)
{
fprintf(stderr, "invalid number of seconds for aggregation: %d\n", agg_interval);
exit(1);
}
#endif
break;
default:
fprintf(stderr, _("Try \"%s --help\" for more information.\n"), progname);
exit(1);
break;
}
}
/* compute a per thread delay */
throttle_delay *= nthreads;
if (argc > optind)
dbName = argv[optind];
else
{
if ((env = getenv("PGDATABASE")) != NULL && *env != '\0')
dbName = env;
else if (login != NULL && *login != '\0')
dbName = login;
else
dbName = "";
}
if (is_init_mode)
{
if (benchmarking_option_set)
{
fprintf(stderr, "some options cannot be used in initialization (-i) mode\n");
exit(1);
}
init(is_no_vacuum);
exit(0);
}
else
{
if (initialization_option_set)
{
fprintf(stderr, "some options cannot be used in benchmarking mode\n");
exit(1);
}
}
/* Use DEFAULT_NXACTS if neither nxacts nor duration is specified. */
if (nxacts <= 0 && duration <= 0)
nxacts = DEFAULT_NXACTS;
if (nclients % nthreads != 0)
{
fprintf(stderr, "number of clients (%d) must be a multiple of number of threads (%d)\n", nclients, nthreads);
exit(1);
}
/* --sampling-rate may be used only with -l */
if (sample_rate > 0.0 && !use_log)
{
fprintf(stderr, "log sampling rate is allowed only when logging transactions (-l) \n");
exit(1);
}
/* --sampling-rate may must not be used with --aggregate-interval */
if (sample_rate > 0.0 && agg_interval > 0)
{
fprintf(stderr, "log sampling (--sampling-rate) and aggregation (--aggregate-interval) can't be used at the same time\n");
exit(1);
}
if (agg_interval > 0 && (!use_log))
{
fprintf(stderr, "log aggregation is allowed only when actually logging transactions\n");
exit(1);
}
if ((duration > 0) && (agg_interval > duration))
{
fprintf(stderr, "number of seconds for aggregation (%d) must not be higher that test duration (%d)\n", agg_interval, duration);
exit(1);
}
if ((duration > 0) && (agg_interval > 0) && (duration % agg_interval != 0))
{
fprintf(stderr, "duration (%d) must be a multiple of aggregation interval (%d)\n", duration, agg_interval);
exit(1);
}
/*
* is_latencies only works with multiple threads in thread-based
* implementations, not fork-based ones, because it supposes that the
* parent can see changes made to the per-thread execution stats by child
* threads. It seems useful enough to accept despite this limitation, but
* perhaps we should FIXME someday (by passing the stats data back up
* through the parent-to-child pipes).
*/
#ifndef ENABLE_THREAD_SAFETY
if (is_latencies && nthreads > 1)
{
fprintf(stderr, "-r does not work with -j larger than 1 on this platform.\n");
exit(1);
}
#endif
/*
* save main process id in the global variable because process id will be
* changed after fork.
*/
main_pid = (int) getpid();
progress_nclients = nclients;
progress_nthreads = nthreads;
if (nclients > 1)
{
state = (CState *) pg_realloc(state, sizeof(CState) * nclients);
memset(state + 1, 0, sizeof(CState) * (nclients - 1));
/* copy any -D switch values to all clients */
for (i = 1; i < nclients; i++)
{
int j;
state[i].id = i;
for (j = 0; j < state[0].nvariables; j++)
{
if (!putVariable(&state[i], "startup", state[0].variables[j].name, state[0].variables[j].value))
exit(1);
}
}
}
if (debug)
{
if (duration <= 0)
printf("pghost: %s pgport: %s nclients: %d nxacts: %d dbName: %s\n",
pghost, pgport, nclients, nxacts, dbName);
else
printf("pghost: %s pgport: %s nclients: %d duration: %d dbName: %s\n",
pghost, pgport, nclients, duration, dbName);
}
/* opening connection... */
con = doConnect();
if (con == NULL)
exit(1);
if (PQstatus(con) == CONNECTION_BAD)
{
fprintf(stderr, "Connection to database '%s' failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
if (ttype != 3)
{
/*
* get the scaling factor that should be same as count(*) from
* pgbench_branches if this is not a custom query
*/
res = PQexec(con, "select count(*) from pgbench_branches");
if (PQresultStatus(res) != PGRES_TUPLES_OK)
{
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
scale = atoi(PQgetvalue(res, 0, 0));
if (scale < 0)
{
fprintf(stderr, "count(*) from pgbench_branches invalid (%d)\n", scale);
exit(1);
}
PQclear(res);
/* warn if we override user-given -s switch */
if (scale_given)
fprintf(stderr,
"Scale option ignored, using pgbench_branches table count = %d\n",
scale);
}
/*
* :scale variables normally get -s or database scale, but don't override
* an explicit -D switch
*/
if (getVariable(&state[0], "scale") == NULL)
{
snprintf(val, sizeof(val), "%d", scale);
for (i = 0; i < nclients; i++)
{
if (!putVariable(&state[i], "startup", "scale", val))
exit(1);
}
}
/*
* Define a :client_id variable that is unique per connection. But don't
* override an explicit -D switch.
*/
if (getVariable(&state[0], "client_id") == NULL)
{
for (i = 0; i < nclients; i++)
{
snprintf(val, sizeof(val), "%d", i);
if (!putVariable(&state[i], "startup", "client_id", val))
exit(1);
}
}
if (!is_no_vacuum)
{
fprintf(stderr, "starting vacuum...");
executeStatement(con, "vacuum pgbench_branches");
executeStatement(con, "vacuum pgbench_tellers");
executeStatement(con, "truncate pgbench_history");
fprintf(stderr, "end.\n");
if (do_vacuum_accounts)
{
fprintf(stderr, "starting vacuum pgbench_accounts...");
executeStatement(con, "vacuum analyze pgbench_accounts");
fprintf(stderr, "end.\n");
}
}
PQfinish(con);
/* set random seed */
INSTR_TIME_SET_CURRENT(start_time);
srandom((unsigned int) INSTR_TIME_GET_MICROSEC(start_time));
/* process builtin SQL scripts */
switch (ttype)
{
case 0:
sql_files[0] = process_builtin(tpc_b);
num_files = 1;
break;
case 1:
sql_files[0] = process_builtin(select_only);
num_files = 1;
break;
case 2:
sql_files[0] = process_builtin(simple_update);
num_files = 1;
break;
default:
break;
}
/* set up thread data structures */
threads = (TState *) pg_malloc(sizeof(TState) * nthreads);
for (i = 0; i < nthreads; i++)
{
TState *thread = &threads[i];
thread->tid = i;
thread->state = &state[nclients / nthreads * i];
thread->nstate = nclients / nthreads;
thread->random_state[0] = random();
thread->random_state[1] = random();
thread->random_state[2] = random();
if (is_latencies)
{
/* Reserve memory for the thread to store per-command latencies */
int t;
thread->exec_elapsed = (instr_time *)
pg_malloc(sizeof(instr_time) * num_commands);
thread->exec_count = (int *)
pg_malloc(sizeof(int) * num_commands);
for (t = 0; t < num_commands; t++)
{
INSTR_TIME_SET_ZERO(thread->exec_elapsed[t]);
thread->exec_count[t] = 0;
}
}
else
{
thread->exec_elapsed = NULL;
thread->exec_count = NULL;
}
}
/* get start up time */
INSTR_TIME_SET_CURRENT(start_time);
/* set alarm if duration is specified. */
if (duration > 0)
setalarm(duration);
/* start threads */
for (i = 0; i < nthreads; i++)
{
TState *thread = &threads[i];
INSTR_TIME_SET_CURRENT(thread->start_time);
/* the first thread (i = 0) is executed by main thread */
if (i > 0)
{
int err = pthread_create(&thread->thread, NULL, threadRun, thread);
if (err != 0 || thread->thread == INVALID_THREAD)
{
fprintf(stderr, "cannot create thread: %s\n", strerror(err));
exit(1);
}
}
else
{
thread->thread = INVALID_THREAD;
}
}
/* wait for threads and accumulate results */
INSTR_TIME_SET_ZERO(conn_total_time);
for (i = 0; i < nthreads; i++)
{
void *ret = NULL;
if (threads[i].thread == INVALID_THREAD)
ret = threadRun(&threads[i]);
else
pthread_join(threads[i].thread, &ret);
if (ret != NULL)
{
TResult *r = (TResult *) ret;
total_xacts += r->xacts;
total_latencies += r->latencies;
total_sqlats += r->sqlats;
throttle_lag += r->throttle_lag;
if (r->throttle_lag_max > throttle_lag_max)
throttle_lag_max = r->throttle_lag_max;
INSTR_TIME_ADD(conn_total_time, r->conn_time);
free(ret);
}
}
disconnect_all(state, nclients);
/*
* XXX We compute results as though every client of every thread started
* and finished at the same time. That model can diverge noticeably from
* reality for a short benchmark run involving relatively many threads.
* The first thread may process notably many transactions before the last
* thread begins. Improving the model alone would bring limited benefit,
* because performance during those periods of partial thread count can
* easily exceed steady state performance. This is one of the many ways
* short runs convey deceptive performance figures.
*/
INSTR_TIME_SET_CURRENT(total_time);
INSTR_TIME_SUBTRACT(total_time, start_time);
printResults(ttype, total_xacts, nclients, threads, nthreads,
total_time, conn_total_time, total_latencies, total_sqlats,
throttle_lag, throttle_lag_max);
return 0;
}
static void *
threadRun(void *arg)
{
TState *thread = (TState *) arg;
CState *state = thread->state;
TResult *result;
FILE *logfile = NULL; /* per-thread log file */
instr_time start,
end;
int nstate = thread->nstate;
int remains = nstate; /* number of remaining clients */
int i;
/* for reporting progress: */
int64 thread_start = INSTR_TIME_GET_MICROSEC(thread->start_time);
int64 last_report = thread_start;
int64 next_report = last_report + (int64) progress * 1000000;
int64 last_count = 0,
last_lats = 0,
last_sqlats = 0,
last_lags = 0;
AggVals aggs;
/*
* Initialize throttling rate target for all of the thread's clients. It
* might be a little more accurate to reset thread->start_time here too.
* The possible drift seems too small relative to typical throttle delay
* times to worry about it.
*/
INSTR_TIME_SET_CURRENT(start);
thread->throttle_trigger = INSTR_TIME_GET_MICROSEC(start);
thread->throttle_lag = 0;
thread->throttle_lag_max = 0;
result = pg_malloc(sizeof(TResult));
INSTR_TIME_SET_ZERO(result->conn_time);
/* open log file if requested */
if (use_log)
{
char logpath[64];
if (thread->tid == 0)
snprintf(logpath, sizeof(logpath), "pgbench_log.%d", main_pid);
else
snprintf(logpath, sizeof(logpath), "pgbench_log.%d.%d", main_pid, thread->tid);
logfile = fopen(logpath, "w");
if (logfile == NULL)
{
fprintf(stderr, "Couldn't open logfile \"%s\": %s", logpath, strerror(errno));
goto done;
}
}
if (!is_connect)
{
/* make connections to the database */
for (i = 0; i < nstate; i++)
{
if ((state[i].con = doConnect()) == NULL)
goto done;
}
}
/* time after thread and connections set up */
INSTR_TIME_SET_CURRENT(result->conn_time);
INSTR_TIME_SUBTRACT(result->conn_time, thread->start_time);
agg_vals_init(&aggs, thread->start_time);
/* send start up queries in async manner */
for (i = 0; i < nstate; i++)
{
CState *st = &state[i];
Command **commands = sql_files[st->use_file];
int prev_ecnt = st->ecnt;
st->use_file = getrand(thread, 0, num_files - 1);
if (!doCustom(thread, st, &result->conn_time, logfile, &aggs))
remains--; /* I've aborted */
if (st->ecnt > prev_ecnt && commands[st->state]->type == META_COMMAND)
{
fprintf(stderr, "Client %d aborted in state %d. Execution meta-command failed.\n", i, st->state);
remains--; /* I've aborted */
PQfinish(st->con);
st->con = NULL;
}
}
while (remains > 0)
{
fd_set input_mask;
int maxsock; /* max socket number to be waited */
int64 now_usec = 0;
int64 min_usec;
FD_ZERO(&input_mask);
maxsock = -1;
min_usec = INT64_MAX;
for (i = 0; i < nstate; i++)
{
CState *st = &state[i];
Command **commands = sql_files[st->use_file];
int sock;
if (st->con == NULL)
{
continue;
}
else if (st->sleeping)
{
if (st->throttling && timer_exceeded)
{
/* interrupt client which has not started a transaction */
remains--;
st->sleeping = 0;
st->throttling = false;
PQfinish(st->con);
st->con = NULL;
continue;
}
else /* just a nap from the script */
{
int this_usec;
if (min_usec == INT64_MAX)
{
instr_time now;
INSTR_TIME_SET_CURRENT(now);
now_usec = INSTR_TIME_GET_MICROSEC(now);
}
this_usec = st->txn_scheduled - now_usec;
if (min_usec > this_usec)
min_usec = this_usec;
}
}
else if (commands[st->state]->type == META_COMMAND)
{
min_usec = 0; /* the connection is ready to run */
break;
}
sock = PQsocket(st->con);
if (sock < 0)
{
fprintf(stderr, "bad socket: %s\n", strerror(errno));
goto done;
}
FD_SET(sock, &input_mask);
if (maxsock < sock)
maxsock = sock;
}
if (min_usec > 0 && maxsock != -1)
{
int nsocks; /* return from select(2) */
if (min_usec != INT64_MAX)
{
struct timeval timeout;
timeout.tv_sec = min_usec / 1000000;
timeout.tv_usec = min_usec % 1000000;
nsocks = select(maxsock + 1, &input_mask, NULL, NULL, &timeout);
}
else
nsocks = select(maxsock + 1, &input_mask, NULL, NULL, NULL);
if (nsocks < 0)
{
if (errno == EINTR)
continue;
/* must be something wrong */
fprintf(stderr, "select failed: %s\n", strerror(errno));
goto done;
}
}
/* ok, backend returns reply */
for (i = 0; i < nstate; i++)
{
CState *st = &state[i];
Command **commands = sql_files[st->use_file];
int prev_ecnt = st->ecnt;
if (st->con && (FD_ISSET(PQsocket(st->con), &input_mask)
|| commands[st->state]->type == META_COMMAND))
{
if (!doCustom(thread, st, &result->conn_time, logfile, &aggs))
remains--; /* I've aborted */
}
if (st->ecnt > prev_ecnt && commands[st->state]->type == META_COMMAND)
{
fprintf(stderr, "Client %d aborted in state %d. Execution of meta-command failed.\n", i, st->state);
remains--; /* I've aborted */
PQfinish(st->con);
st->con = NULL;
}
}
#ifdef PTHREAD_FORK_EMULATION
/* each process reports its own progression */
if (progress)
{
instr_time now_time;
int64 now;
INSTR_TIME_SET_CURRENT(now_time);
now = INSTR_TIME_GET_MICROSEC(now_time);
if (now >= next_report)
{
/* generate and show report */
int64 count = 0,
lats = 0,
sqlats = 0;
int64 lags = thread->throttle_lag;
int64 run = now - last_report;
double tps,
total_run,
latency,
sqlat,
stdev,
lag;
for (i = 0; i < nstate; i++)
{
count += state[i].cnt;
lats += state[i].txn_latencies;
sqlats += state[i].txn_sqlats;
}
total_run = (now - thread_start) / 1000000.0;
tps = 1000000.0 * (count - last_count) / run;
latency = 0.001 * (lats - last_lats) / (count - last_count);
sqlat = 1.0 * (sqlats - last_sqlats) / (count - last_count);
stdev = 0.001 * sqrt(sqlat - 1000000.0 * latency * latency);
lag = 0.001 * (lags - last_lags) / (count - last_count);
if (throttle_delay)
fprintf(stderr,
"progress %d: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f, lag %.3f ms\n",
thread->tid, total_run, tps, latency, stdev, lag);
else
fprintf(stderr,
"progress %d: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f\n",
thread->tid, total_run, tps, latency, stdev);
last_count = count;
last_lats = lats;
last_sqlats = sqlats;
last_lags = lags;
last_report = now;
next_report += (int64) progress *1000000;
}
}
#else
/* progress report by thread 0 for all threads */
if (progress && thread->tid == 0)
{
instr_time now_time;
int64 now;
INSTR_TIME_SET_CURRENT(now_time);
now = INSTR_TIME_GET_MICROSEC(now_time);
if (now >= next_report)
{
/* generate and show report */
int64 count = 0,
lats = 0,
sqlats = 0,
lags = 0;
int64 run = now - last_report;
double tps,
total_run,
latency,
sqlat,
lag,
stdev;
for (i = 0; i < progress_nclients; i++)
{
count += state[i].cnt;
lats += state[i].txn_latencies;
sqlats += state[i].txn_sqlats;
}
for (i = 0; i < progress_nthreads; i++)
lags += thread[i].throttle_lag;
total_run = (now - thread_start) / 1000000.0;
tps = 1000000.0 * (count - last_count) / run;
latency = 0.001 * (lats - last_lats) / (count - last_count);
sqlat = 1.0 * (sqlats - last_sqlats) / (count - last_count);
stdev = 0.001 * sqrt(sqlat - 1000000.0 * latency * latency);
lag = 0.001 * (lags - last_lags) / (count - last_count);
if (throttle_delay)
fprintf(stderr,
"progress: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f, lag %.3f ms\n",
total_run, tps, latency, stdev, lag);
else
fprintf(stderr,
"progress: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f\n",
total_run, tps, latency, stdev);
last_count = count;
last_lats = lats;
last_sqlats = sqlats;
last_lags = lags;
last_report = now;
next_report += (int64) progress *1000000;
}
}
#endif /* PTHREAD_FORK_EMULATION */
}
done:
INSTR_TIME_SET_CURRENT(start);
disconnect_all(state, nstate);
result->xacts = 0;
result->latencies = 0;
result->sqlats = 0;
for (i = 0; i < nstate; i++)
{
result->xacts += state[i].cnt;
result->latencies += state[i].txn_latencies;
result->sqlats += state[i].txn_sqlats;
}
result->throttle_lag = thread->throttle_lag;
result->throttle_lag_max = thread->throttle_lag_max;
INSTR_TIME_SET_CURRENT(end);
INSTR_TIME_ACCUM_DIFF(result->conn_time, end, start);
if (logfile)
fclose(logfile);
return result;
}
/*
* Support for duration option: set timer_exceeded after so many seconds.
*/
#ifndef WIN32
static void
handle_sig_alarm(SIGNAL_ARGS)
{
timer_exceeded = true;
}
static void
setalarm(int seconds)
{
pqsignal(SIGALRM, handle_sig_alarm);
alarm(seconds);
}
#ifndef ENABLE_THREAD_SAFETY
/*
* implements pthread using fork.
*/
typedef struct fork_pthread
{
pid_t pid;
int pipes[2];
} fork_pthread;
static int
pthread_create(pthread_t *thread,
pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg)
{
fork_pthread *th;
void *ret;
int rc;
th = (fork_pthread *) pg_malloc(sizeof(fork_pthread));
if (pipe(th->pipes) < 0)
{
free(th);
return errno;
}
th->pid = fork();
if (th->pid == -1) /* error */
{
free(th);
return errno;
}
if (th->pid != 0) /* in parent process */
{
close(th->pipes[1]);
*thread = th;
return 0;
}
/* in child process */
close(th->pipes[0]);
/* set alarm again because the child does not inherit timers */
if (duration > 0)
setalarm(duration);
ret = start_routine(arg);
rc = write(th->pipes[1], ret, sizeof(TResult));
(void) rc;
close(th->pipes[1]);
free(th);
exit(0);
}
static int
pthread_join(pthread_t th, void **thread_return)
{
int status;
while (waitpid(th->pid, &status, 0) != th->pid)
{
if (errno != EINTR)
return errno;
}
if (thread_return != NULL)
{
/* assume result is TResult */
*thread_return = pg_malloc(sizeof(TResult));
if (read(th->pipes[0], *thread_return, sizeof(TResult)) != sizeof(TResult))
{
free(*thread_return);
*thread_return = NULL;
}
}
close(th->pipes[0]);
free(th);
return 0;
}
#endif
#else /* WIN32 */
static VOID CALLBACK
win32_timer_callback(PVOID lpParameter, BOOLEAN TimerOrWaitFired)
{
timer_exceeded = true;
}
static void
setalarm(int seconds)
{
HANDLE queue;
HANDLE timer;
/* This function will be called at most once, so we can cheat a bit. */
queue = CreateTimerQueue();
if (seconds > ((DWORD) -1) / 1000 ||
!CreateTimerQueueTimer(&timer, queue,
win32_timer_callback, NULL, seconds * 1000, 0,
WT_EXECUTEINTIMERTHREAD | WT_EXECUTEONLYONCE))
{
fprintf(stderr, "Failed to set timer\n");
exit(1);
}
}
/* partial pthread implementation for Windows */
typedef struct win32_pthread
{
HANDLE handle;
void *(*routine) (void *);
void *arg;
void *result;
} win32_pthread;
static unsigned __stdcall
win32_pthread_run(void *arg)
{
win32_pthread *th = (win32_pthread *) arg;
th->result = th->routine(th->arg);
return 0;
}
static int
pthread_create(pthread_t *thread,
pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg)
{
int save_errno;
win32_pthread *th;
th = (win32_pthread *) pg_malloc(sizeof(win32_pthread));
th->routine = start_routine;
th->arg = arg;
th->result = NULL;
th->handle = (HANDLE) _beginthreadex(NULL, 0, win32_pthread_run, th, 0, NULL);
if (th->handle == NULL)
{
save_errno = errno;
free(th);
return save_errno;
}
*thread = th;
return 0;
}
static int
pthread_join(pthread_t th, void **thread_return)
{
if (th == NULL || th->handle == NULL)
return errno = EINVAL;
if (WaitForSingleObject(th->handle, INFINITE) != WAIT_OBJECT_0)
{
_dosmaperr(GetLastError());
return errno;
}
if (thread_return)
*thread_return = th->result;
CloseHandle(th->handle);
free(th);
return 0;
}
#endif /* WIN32 */