mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-21 08:29:39 +08:00
4b4b680c3d
Since the dawn of time (aka Postgres95) multiple pins of the same buffer by one backend have been optimized not to modify the shared refcount more than once. This optimization has always used a NBuffer sized array in each backend keeping track of a backend's pins. That array (PrivateRefCount) was one of the biggest per-backend memory allocations, depending on the shared_buffers setting. Besides the waste of memory it also has proven to be a performance bottleneck when assertions are enabled as we make sure that there's no remaining pins left at the end of transactions. Also, on servers with lots of memory and a correspondingly high shared_buffers setting the amount of random memory accesses can also lead to poor cpu cache efficiency. Because of these reasons a backend's buffers pins are now kept track of in a small statically sized array that overflows into a hash table when necessary. Benchmarks have shown neutral to positive performance results with considerably lower memory usage. Patch by me, review by Robert Haas. Discussion: 20140321182231.GA17111@alap3.anarazel.de
249 lines
7.6 KiB
C
249 lines
7.6 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* pg_buffercache_pages.c
|
|
* display some contents of the buffer cache
|
|
*
|
|
* contrib/pg_buffercache/pg_buffercache_pages.c
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "funcapi.h"
|
|
#include "storage/buf_internals.h"
|
|
#include "storage/bufmgr.h"
|
|
|
|
|
|
#define NUM_BUFFERCACHE_PAGES_MIN_ELEM 8
|
|
#define NUM_BUFFERCACHE_PAGES_ELEM 9
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
/*
|
|
* Record structure holding the to be exposed cache data.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32 bufferid;
|
|
Oid relfilenode;
|
|
Oid reltablespace;
|
|
Oid reldatabase;
|
|
ForkNumber forknum;
|
|
BlockNumber blocknum;
|
|
bool isvalid;
|
|
bool isdirty;
|
|
uint16 usagecount;
|
|
/*
|
|
* An int32 is sufficiently large, as MAX_BACKENDS prevents a buffer from
|
|
* being pinned by too many backends and each backend will only pin once
|
|
* because of bufmgr.c's PrivateRefCount infrastructure.
|
|
*/
|
|
int32 pinning_backends;
|
|
} BufferCachePagesRec;
|
|
|
|
|
|
/*
|
|
* Function context for data persisting over repeated calls.
|
|
*/
|
|
typedef struct
|
|
{
|
|
TupleDesc tupdesc;
|
|
BufferCachePagesRec *record;
|
|
} BufferCachePagesContext;
|
|
|
|
|
|
/*
|
|
* Function returning data from the shared buffer cache - buffer number,
|
|
* relation node/tablespace/database/blocknum and dirty indicator.
|
|
*/
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_pages);
|
|
|
|
Datum
|
|
pg_buffercache_pages(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
Datum result;
|
|
MemoryContext oldcontext;
|
|
BufferCachePagesContext *fctx; /* User function context. */
|
|
TupleDesc tupledesc;
|
|
TupleDesc expected_tupledesc;
|
|
HeapTuple tuple;
|
|
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int i;
|
|
volatile BufferDesc *bufHdr;
|
|
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/* Switch context when allocating stuff to be used in later calls */
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* Create a user function context for cross-call persistence */
|
|
fctx = (BufferCachePagesContext *) palloc(sizeof(BufferCachePagesContext));
|
|
|
|
/*
|
|
* To smoothly support upgrades from version 1.0 of this extension
|
|
* transparently handle the (non-)existence of the pinning_backends
|
|
* column. We unfortunately have to get the result type for that... -
|
|
* we can't use the result type determined by the function definition
|
|
* without potentially crashing when somebody uses the old (or even
|
|
* wrong) function definition though.
|
|
*/
|
|
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
if (expected_tupledesc->natts < NUM_BUFFERCACHE_PAGES_MIN_ELEM ||
|
|
expected_tupledesc->natts > NUM_BUFFERCACHE_PAGES_ELEM)
|
|
elog(ERROR, "incorrect number of output arguments");
|
|
|
|
/* Construct a tuple descriptor for the result rows. */
|
|
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts, false);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
|
|
INT4OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "relfilenode",
|
|
OIDOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "reltablespace",
|
|
OIDOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 4, "reldatabase",
|
|
OIDOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 5, "relforknumber",
|
|
INT2OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 6, "relblocknumber",
|
|
INT8OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 7, "isdirty",
|
|
BOOLOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 8, "usage_count",
|
|
INT2OID, -1, 0);
|
|
|
|
if (expected_tupledesc->natts == NUM_BUFFERCACHE_PAGES_ELEM)
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 9, "pinning_backends",
|
|
INT4OID, -1, 0);
|
|
|
|
fctx->tupdesc = BlessTupleDesc(tupledesc);
|
|
|
|
/* Allocate NBuffers worth of BufferCachePagesRec records. */
|
|
fctx->record = (BufferCachePagesRec *) palloc(sizeof(BufferCachePagesRec) * NBuffers);
|
|
|
|
/* Set max calls and remember the user function context. */
|
|
funcctx->max_calls = NBuffers;
|
|
funcctx->user_fctx = fctx;
|
|
|
|
/* Return to original context when allocating transient memory */
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* To get a consistent picture of the buffer state, we must lock all
|
|
* partitions of the buffer map. Needless to say, this is horrible
|
|
* for concurrency. Must grab locks in increasing order to avoid
|
|
* possible deadlocks.
|
|
*/
|
|
for (i = 0; i < NUM_BUFFER_PARTITIONS; i++)
|
|
LWLockAcquire(BufMappingPartitionLockByIndex(i), LW_SHARED);
|
|
|
|
/*
|
|
* Scan though all the buffers, saving the relevant fields in the
|
|
* fctx->record structure.
|
|
*/
|
|
for (i = 0, bufHdr = BufferDescriptors; i < NBuffers; i++, bufHdr++)
|
|
{
|
|
/* Lock each buffer header before inspecting. */
|
|
LockBufHdr(bufHdr);
|
|
|
|
fctx->record[i].bufferid = BufferDescriptorGetBuffer(bufHdr);
|
|
fctx->record[i].relfilenode = bufHdr->tag.rnode.relNode;
|
|
fctx->record[i].reltablespace = bufHdr->tag.rnode.spcNode;
|
|
fctx->record[i].reldatabase = bufHdr->tag.rnode.dbNode;
|
|
fctx->record[i].forknum = bufHdr->tag.forkNum;
|
|
fctx->record[i].blocknum = bufHdr->tag.blockNum;
|
|
fctx->record[i].usagecount = bufHdr->usage_count;
|
|
fctx->record[i].pinning_backends = bufHdr->refcount;
|
|
|
|
if (bufHdr->flags & BM_DIRTY)
|
|
fctx->record[i].isdirty = true;
|
|
else
|
|
fctx->record[i].isdirty = false;
|
|
|
|
/* Note if the buffer is valid, and has storage created */
|
|
if ((bufHdr->flags & BM_VALID) && (bufHdr->flags & BM_TAG_VALID))
|
|
fctx->record[i].isvalid = true;
|
|
else
|
|
fctx->record[i].isvalid = false;
|
|
|
|
UnlockBufHdr(bufHdr);
|
|
}
|
|
|
|
/*
|
|
* And release locks. We do this in reverse order for two reasons:
|
|
* (1) Anyone else who needs more than one of the locks will be trying
|
|
* to lock them in increasing order; we don't want to release the
|
|
* other process until it can get all the locks it needs. (2) This
|
|
* avoids O(N^2) behavior inside LWLockRelease.
|
|
*/
|
|
for (i = NUM_BUFFER_PARTITIONS; --i >= 0;)
|
|
LWLockRelease(BufMappingPartitionLockByIndex(i));
|
|
}
|
|
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/* Get the saved state */
|
|
fctx = funcctx->user_fctx;
|
|
|
|
if (funcctx->call_cntr < funcctx->max_calls)
|
|
{
|
|
uint32 i = funcctx->call_cntr;
|
|
Datum values[NUM_BUFFERCACHE_PAGES_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_PAGES_ELEM];
|
|
|
|
values[0] = Int32GetDatum(fctx->record[i].bufferid);
|
|
nulls[0] = false;
|
|
|
|
/*
|
|
* Set all fields except the bufferid to null if the buffer is unused
|
|
* or not valid.
|
|
*/
|
|
if (fctx->record[i].blocknum == InvalidBlockNumber ||
|
|
fctx->record[i].isvalid == false)
|
|
{
|
|
nulls[1] = true;
|
|
nulls[2] = true;
|
|
nulls[3] = true;
|
|
nulls[4] = true;
|
|
nulls[5] = true;
|
|
nulls[6] = true;
|
|
nulls[7] = true;
|
|
/* unused for v1.0 callers, but the array is always long enough */
|
|
nulls[8] = true;
|
|
}
|
|
else
|
|
{
|
|
values[1] = ObjectIdGetDatum(fctx->record[i].relfilenode);
|
|
nulls[1] = false;
|
|
values[2] = ObjectIdGetDatum(fctx->record[i].reltablespace);
|
|
nulls[2] = false;
|
|
values[3] = ObjectIdGetDatum(fctx->record[i].reldatabase);
|
|
nulls[3] = false;
|
|
values[4] = ObjectIdGetDatum(fctx->record[i].forknum);
|
|
nulls[4] = false;
|
|
values[5] = Int64GetDatum((int64) fctx->record[i].blocknum);
|
|
nulls[5] = false;
|
|
values[6] = BoolGetDatum(fctx->record[i].isdirty);
|
|
nulls[6] = false;
|
|
values[7] = Int16GetDatum(fctx->record[i].usagecount);
|
|
nulls[7] = false;
|
|
/* unused for v1.0 callers, but the array is always long enough */
|
|
values[8] = Int32GetDatum(fctx->record[i].pinning_backends);
|
|
nulls[8] = false;
|
|
}
|
|
|
|
/* Build and return the tuple. */
|
|
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
SRF_RETURN_NEXT(funcctx, result);
|
|
}
|
|
else
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|