mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-27 08:39:28 +08:00
436a2956d8
comment line where output as too long, and update typedefs for /lib directory. Also fix case where identifiers were used as variable names in the backend, but as typedefs in ecpg (favor the backend for indenting). Backpatch to 8.1.X.
531 lines
12 KiB
C
531 lines
12 KiB
C
#include "_int.h"
|
|
|
|
#define GETENTRY(vec,pos) ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))
|
|
|
|
/*
|
|
** GiST support methods
|
|
*/
|
|
PG_FUNCTION_INFO_V1(g_int_consistent);
|
|
PG_FUNCTION_INFO_V1(g_int_compress);
|
|
PG_FUNCTION_INFO_V1(g_int_decompress);
|
|
PG_FUNCTION_INFO_V1(g_int_penalty);
|
|
PG_FUNCTION_INFO_V1(g_int_picksplit);
|
|
PG_FUNCTION_INFO_V1(g_int_union);
|
|
PG_FUNCTION_INFO_V1(g_int_same);
|
|
|
|
Datum g_int_consistent(PG_FUNCTION_ARGS);
|
|
Datum g_int_compress(PG_FUNCTION_ARGS);
|
|
Datum g_int_decompress(PG_FUNCTION_ARGS);
|
|
Datum g_int_penalty(PG_FUNCTION_ARGS);
|
|
Datum g_int_picksplit(PG_FUNCTION_ARGS);
|
|
Datum g_int_union(PG_FUNCTION_ARGS);
|
|
Datum g_int_same(PG_FUNCTION_ARGS);
|
|
|
|
|
|
/*
|
|
** The GiST Consistent method for _intments
|
|
** Should return false if for all data items x below entry,
|
|
** the predicate x op query == FALSE, where op is the oper
|
|
** corresponding to strategy in the pg_amop table.
|
|
*/
|
|
Datum
|
|
g_int_consistent(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
ArrayType *query = (ArrayType *) PG_GETARG_POINTER(1);
|
|
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
|
|
bool retval;
|
|
|
|
if (strategy == BooleanSearchStrategy)
|
|
PG_RETURN_BOOL(execconsistent((QUERYTYPE *) query,
|
|
(ArrayType *) DatumGetPointer(entry->key),
|
|
GIST_LEAF(entry)));
|
|
|
|
/* XXX are we sure it's safe to scribble on the query object here? */
|
|
/* XXX what about toasted input? */
|
|
/* sort query for fast search, key is already sorted */
|
|
CHECKARRVALID(query);
|
|
if (ARRISVOID(query))
|
|
PG_RETURN_BOOL(false);
|
|
PREPAREARR(query);
|
|
|
|
switch (strategy)
|
|
{
|
|
case RTOverlapStrategyNumber:
|
|
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
if (GIST_LEAF(entry))
|
|
DirectFunctionCall3(
|
|
g_int_same,
|
|
entry->key,
|
|
PointerGetDatum(query),
|
|
PointerGetDatum(&retval)
|
|
);
|
|
else
|
|
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
case RTContainsStrategyNumber:
|
|
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
if (GIST_LEAF(entry))
|
|
retval = inner_int_contains(query,
|
|
(ArrayType *) DatumGetPointer(entry->key));
|
|
else
|
|
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
PG_RETURN_BOOL(retval);
|
|
}
|
|
|
|
Datum
|
|
g_int_union(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
|
|
int *size = (int *) PG_GETARG_POINTER(1);
|
|
int4 i,
|
|
*ptr;
|
|
ArrayType *res;
|
|
int totlen = 0;
|
|
|
|
for (i = 0; i < entryvec->n; i++)
|
|
{
|
|
ArrayType *ent = GETENTRY(entryvec, i);
|
|
|
|
CHECKARRVALID(ent);
|
|
totlen += ARRNELEMS(ent);
|
|
}
|
|
|
|
res = new_intArrayType(totlen);
|
|
ptr = ARRPTR(res);
|
|
|
|
for (i = 0; i < entryvec->n; i++)
|
|
{
|
|
ArrayType *ent = GETENTRY(entryvec, i);
|
|
int nel;
|
|
|
|
nel = ARRNELEMS(ent);
|
|
memcpy(ptr, ARRPTR(ent), nel * sizeof(int4));
|
|
ptr += nel;
|
|
}
|
|
|
|
QSORT(res, 1);
|
|
res = _int_unique(res);
|
|
*size = VARSIZE(res);
|
|
PG_RETURN_POINTER(res);
|
|
}
|
|
|
|
/*
|
|
** GiST Compress and Decompress methods
|
|
*/
|
|
Datum
|
|
g_int_compress(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *retval;
|
|
ArrayType *r;
|
|
int len;
|
|
int *dr;
|
|
int i,
|
|
min,
|
|
cand;
|
|
|
|
if (entry->leafkey)
|
|
{
|
|
r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
|
|
CHECKARRVALID(r);
|
|
PREPAREARR(r);
|
|
|
|
if (ARRNELEMS(r) >= 2 * MAXNUMRANGE)
|
|
elog(NOTICE, "Input array is too big (%d maximum allowed, %d current), use gist__intbig_ops opclass instead",
|
|
2 * MAXNUMRANGE - 1, ARRNELEMS(r));
|
|
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
|
|
/*
|
|
* leaf entries never compress one more time, only when entry->leafkey
|
|
* ==true, so now we work only with internal keys
|
|
*/
|
|
|
|
r = (ArrayType *) PG_DETOAST_DATUM(entry->key);
|
|
CHECKARRVALID(r);
|
|
if (ARRISVOID(r))
|
|
{
|
|
if (r != (ArrayType *) DatumGetPointer(entry->key))
|
|
pfree(r);
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
if ((len = ARRNELEMS(r)) >= 2 * MAXNUMRANGE)
|
|
{ /* compress */
|
|
if (r == (ArrayType *) DatumGetPointer(entry->key))
|
|
r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
|
|
r = resize_intArrayType(r, 2 * (len));
|
|
|
|
dr = ARRPTR(r);
|
|
|
|
for (i = len - 1; i >= 0; i--)
|
|
dr[2 * i] = dr[2 * i + 1] = dr[i];
|
|
|
|
len *= 2;
|
|
cand = 1;
|
|
while (len > MAXNUMRANGE * 2)
|
|
{
|
|
min = 0x7fffffff;
|
|
for (i = 2; i < len; i += 2)
|
|
if (min > (dr[i] - dr[i - 1]))
|
|
{
|
|
min = (dr[i] - dr[i - 1]);
|
|
cand = i;
|
|
}
|
|
memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int));
|
|
len -= 2;
|
|
}
|
|
r = resize_intArrayType(r, len);
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
else
|
|
PG_RETURN_POINTER(entry);
|
|
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
Datum
|
|
g_int_decompress(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *retval;
|
|
ArrayType *r;
|
|
int *dr,
|
|
lenr;
|
|
ArrayType *in;
|
|
int lenin;
|
|
int *din;
|
|
int i,
|
|
j;
|
|
|
|
in = (ArrayType *) PG_DETOAST_DATUM(entry->key);
|
|
|
|
CHECKARRVALID(in);
|
|
if (ARRISVOID(in))
|
|
PG_RETURN_POINTER(entry);
|
|
|
|
lenin = ARRNELEMS(in);
|
|
|
|
if (lenin < 2 * MAXNUMRANGE)
|
|
{ /* not compressed value */
|
|
if (in != (ArrayType *) DatumGetPointer(entry->key))
|
|
{
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(in),
|
|
entry->rel, entry->page, entry->offset, VARSIZE(in), FALSE);
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
din = ARRPTR(in);
|
|
lenr = internal_size(din, lenin);
|
|
|
|
r = new_intArrayType(lenr);
|
|
dr = ARRPTR(r);
|
|
|
|
for (i = 0; i < lenin; i += 2)
|
|
for (j = din[i]; j <= din[i + 1]; j++)
|
|
if ((!i) || *(dr - 1) != j)
|
|
*dr++ = j;
|
|
|
|
if (in != (ArrayType *) DatumGetPointer(entry->key))
|
|
pfree(in);
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
|
|
/*
|
|
** The GiST Penalty method for _intments
|
|
*/
|
|
Datum
|
|
g_int_penalty(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
|
|
float *result = (float *) PG_GETARG_POINTER(2);
|
|
ArrayType *ud;
|
|
float tmp1,
|
|
tmp2;
|
|
|
|
ud = inner_int_union((ArrayType *) DatumGetPointer(origentry->key),
|
|
(ArrayType *) DatumGetPointer(newentry->key));
|
|
rt__int_size(ud, &tmp1);
|
|
rt__int_size((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
|
|
*result = tmp1 - tmp2;
|
|
pfree(ud);
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
|
|
|
|
Datum
|
|
g_int_same(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *a = (ArrayType *) PointerGetDatum(PG_GETARG_POINTER(0));
|
|
ArrayType *b = (ArrayType *) PointerGetDatum(PG_GETARG_POINTER(1));
|
|
bool *result = (bool *) PG_GETARG_POINTER(2);
|
|
int4 n = ARRNELEMS(a);
|
|
int4 *da,
|
|
*db;
|
|
|
|
CHECKARRVALID(a);
|
|
CHECKARRVALID(b);
|
|
|
|
if (n != ARRNELEMS(b))
|
|
{
|
|
*result = false;
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
*result = TRUE;
|
|
da = ARRPTR(a);
|
|
db = ARRPTR(b);
|
|
while (n--)
|
|
if (*da++ != *db++)
|
|
{
|
|
*result = FALSE;
|
|
break;
|
|
}
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
/*****************************************************************
|
|
** Common GiST Method
|
|
*****************************************************************/
|
|
|
|
typedef struct
|
|
{
|
|
OffsetNumber pos;
|
|
float cost;
|
|
} SPLITCOST;
|
|
|
|
static int
|
|
comparecost(const void *a, const void *b)
|
|
{
|
|
if (((SPLITCOST *) a)->cost == ((SPLITCOST *) b)->cost)
|
|
return 0;
|
|
else
|
|
return (((SPLITCOST *) a)->cost > ((SPLITCOST *) b)->cost) ? 1 : -1;
|
|
}
|
|
|
|
/*
|
|
** The GiST PickSplit method for _intments
|
|
** We use Guttman's poly time split algorithm
|
|
*/
|
|
Datum
|
|
g_int_picksplit(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
|
|
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
|
|
OffsetNumber i,
|
|
j;
|
|
ArrayType *datum_alpha,
|
|
*datum_beta;
|
|
ArrayType *datum_l,
|
|
*datum_r;
|
|
ArrayType *union_d,
|
|
*union_dl,
|
|
*union_dr;
|
|
ArrayType *inter_d;
|
|
bool firsttime;
|
|
float size_alpha,
|
|
size_beta,
|
|
size_union,
|
|
size_inter;
|
|
float size_waste,
|
|
waste;
|
|
float size_l,
|
|
size_r;
|
|
int nbytes;
|
|
OffsetNumber seed_1 = 0,
|
|
seed_2 = 0;
|
|
OffsetNumber *left,
|
|
*right;
|
|
OffsetNumber maxoff;
|
|
SPLITCOST *costvector;
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(DEBUG3, "--------picksplit %d", entryvec->n);
|
|
#endif
|
|
|
|
maxoff = entryvec->n - 2;
|
|
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
|
|
v->spl_left = (OffsetNumber *) palloc(nbytes);
|
|
v->spl_right = (OffsetNumber *) palloc(nbytes);
|
|
|
|
firsttime = true;
|
|
waste = 0.0;
|
|
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
|
|
{
|
|
datum_alpha = GETENTRY(entryvec, i);
|
|
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
|
|
{
|
|
datum_beta = GETENTRY(entryvec, j);
|
|
|
|
/* compute the wasted space by unioning these guys */
|
|
/* size_waste = size_union - size_inter; */
|
|
union_d = inner_int_union(datum_alpha, datum_beta);
|
|
rt__int_size(union_d, &size_union);
|
|
inter_d = inner_int_inter(datum_alpha, datum_beta);
|
|
rt__int_size(inter_d, &size_inter);
|
|
size_waste = size_union - size_inter;
|
|
|
|
pfree(union_d);
|
|
|
|
if (inter_d != (ArrayType *) NULL)
|
|
pfree(inter_d);
|
|
|
|
/*
|
|
* are these a more promising split that what we've already seen?
|
|
*/
|
|
|
|
if (size_waste > waste || firsttime)
|
|
{
|
|
waste = size_waste;
|
|
seed_1 = i;
|
|
seed_2 = j;
|
|
firsttime = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
left = v->spl_left;
|
|
v->spl_nleft = 0;
|
|
right = v->spl_right;
|
|
v->spl_nright = 0;
|
|
if (seed_1 == 0 || seed_2 == 0)
|
|
{
|
|
seed_1 = 1;
|
|
seed_2 = 2;
|
|
}
|
|
|
|
datum_alpha = GETENTRY(entryvec, seed_1);
|
|
datum_l = copy_intArrayType(datum_alpha);
|
|
rt__int_size(datum_l, &size_l);
|
|
datum_beta = GETENTRY(entryvec, seed_2);
|
|
datum_r = copy_intArrayType(datum_beta);
|
|
rt__int_size(datum_r, &size_r);
|
|
|
|
maxoff = OffsetNumberNext(maxoff);
|
|
|
|
/*
|
|
* sort entries
|
|
*/
|
|
costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
|
|
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
|
|
{
|
|
costvector[i - 1].pos = i;
|
|
datum_alpha = GETENTRY(entryvec, i);
|
|
union_d = inner_int_union(datum_l, datum_alpha);
|
|
rt__int_size(union_d, &size_alpha);
|
|
pfree(union_d);
|
|
union_d = inner_int_union(datum_r, datum_alpha);
|
|
rt__int_size(union_d, &size_beta);
|
|
pfree(union_d);
|
|
costvector[i - 1].cost = Abs((size_alpha - size_l) - (size_beta - size_r));
|
|
}
|
|
qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);
|
|
|
|
/*
|
|
* Now split up the regions between the two seeds. An important property
|
|
* of this split algorithm is that the split vector v has the indices of
|
|
* items to be split in order in its left and right vectors. We exploit
|
|
* this property by doing a merge in the code that actually splits the
|
|
* page.
|
|
*
|
|
* For efficiency, we also place the new index tuple in this loop. This is
|
|
* handled at the very end, when we have placed all the existing tuples
|
|
* and i == maxoff + 1.
|
|
*/
|
|
|
|
|
|
for (j = 0; j < maxoff; j++)
|
|
{
|
|
i = costvector[j].pos;
|
|
|
|
/*
|
|
* If we've already decided where to place this item, just put it on
|
|
* the right list. Otherwise, we need to figure out which page needs
|
|
* the least enlargement in order to store the item.
|
|
*/
|
|
|
|
if (i == seed_1)
|
|
{
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
continue;
|
|
}
|
|
else if (i == seed_2)
|
|
{
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
continue;
|
|
}
|
|
|
|
/* okay, which page needs least enlargement? */
|
|
datum_alpha = GETENTRY(entryvec, i);
|
|
union_dl = inner_int_union(datum_l, datum_alpha);
|
|
union_dr = inner_int_union(datum_r, datum_alpha);
|
|
rt__int_size(union_dl, &size_alpha);
|
|
rt__int_size(union_dr, &size_beta);
|
|
|
|
/* pick which page to add it to */
|
|
if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, 0.01))
|
|
{
|
|
if (datum_l)
|
|
pfree(datum_l);
|
|
if (union_dr)
|
|
pfree(union_dr);
|
|
datum_l = union_dl;
|
|
size_l = size_alpha;
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
}
|
|
else
|
|
{
|
|
if (datum_r)
|
|
pfree(datum_r);
|
|
if (union_dl)
|
|
pfree(union_dl);
|
|
datum_r = union_dr;
|
|
size_r = size_beta;
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
}
|
|
}
|
|
pfree(costvector);
|
|
*right = *left = FirstOffsetNumber;
|
|
|
|
v->spl_ldatum = PointerGetDatum(datum_l);
|
|
v->spl_rdatum = PointerGetDatum(datum_r);
|
|
|
|
PG_RETURN_POINTER(v);
|
|
}
|