postgresql/contrib/tablefunc/tablefunc.c
2003-06-15 17:59:10 +00:00

1486 lines
40 KiB
C

/*
* tablefunc
*
* Sample to demonstrate C functions which return setof scalar
* and setof composite.
* Joe Conway <mail@joeconway.com>
*
* Copyright 2002 by PostgreSQL Global Development Group
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without a written agreement
* is hereby granted, provided that the above copyright notice and this
* paragraph and the following two paragraphs appear in all copies.
*
* IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
* LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
* DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#include "postgres.h"
#include <math.h>
#include "fmgr.h"
#include "funcapi.h"
#include "executor/spi.h"
#include "lib/stringinfo.h"
#include "miscadmin.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "tablefunc.h"
static int load_categories_hash(char *cats_sql, MemoryContext per_query_ctx);
static Tuplestorestate *get_crosstab_tuplestore(char *sql,
int num_categories,
TupleDesc tupdesc,
MemoryContext per_query_ctx);
static void validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch);
static bool compatCrosstabTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2);
static bool compatConnectbyTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2);
static void get_normal_pair(float8 *x1, float8 *x2);
static TupleDesc make_crosstab_tupledesc(TupleDesc spi_tupdesc,
int num_categories);
static Tuplestorestate *connectby(char *relname,
char *key_fld,
char *parent_key_fld,
char *branch_delim,
char *start_with,
int max_depth,
bool show_branch,
MemoryContext per_query_ctx,
AttInMetadata *attinmeta);
static Tuplestorestate *build_tuplestore_recursively(char *key_fld,
char *parent_key_fld,
char *relname,
char *branch_delim,
char *start_with,
char *branch,
int level,
int max_depth,
bool show_branch,
MemoryContext per_query_ctx,
AttInMetadata *attinmeta,
Tuplestorestate *tupstore);
typedef struct
{
float8 mean; /* mean of the distribution */
float8 stddev; /* stddev of the distribution */
float8 carry_val; /* hold second generated value */
bool use_carry; /* use second generated value */
} normal_rand_fctx;
typedef struct
{
SPITupleTable *spi_tuptable; /* sql results from user query */
char *lastrowid; /* rowid of the last tuple sent */
} crosstab_fctx;
#define GET_TEXT(cstrp) DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(cstrp)))
#define GET_STR(textp) DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(textp)))
#define xpfree(var_) \
do { \
if (var_ != NULL) \
{ \
pfree(var_); \
var_ = NULL; \
} \
} while (0)
/* sign, 10 digits, '\0' */
#define INT32_STRLEN 12
/* hash table support */
static HTAB *crosstab_HashTable;
/* The information we cache about loaded procedures */
typedef struct crosstab_cat_desc
{
char *catname;
int attidx; /* zero based */
} crosstab_cat_desc;
#define MAX_CATNAME_LEN NAMEDATALEN
#define INIT_CATS 64
#define crosstab_HashTableLookup(CATNAME, CATDESC) \
do { \
crosstab_HashEnt *hentry; char key[MAX_CATNAME_LEN]; \
\
MemSet(key, 0, MAX_CATNAME_LEN); \
snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATNAME); \
hentry = (crosstab_HashEnt*) hash_search(crosstab_HashTable, \
key, HASH_FIND, NULL); \
if (hentry) \
CATDESC = hentry->catdesc; \
else \
CATDESC = NULL; \
} while(0)
#define crosstab_HashTableInsert(CATDESC) \
do { \
crosstab_HashEnt *hentry; bool found; char key[MAX_CATNAME_LEN]; \
\
MemSet(key, 0, MAX_CATNAME_LEN); \
snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATDESC->catname); \
hentry = (crosstab_HashEnt*) hash_search(crosstab_HashTable, \
key, HASH_ENTER, &found); \
if (hentry == NULL) \
elog(ERROR, "out of memory in crosstab_HashTable"); \
if (found) \
elog(ERROR, "trying to use a category name more than once"); \
hentry->catdesc = CATDESC; \
} while(0)
#define crosstab_HashTableDelete(CATNAME) \
do { \
crosstab_HashEnt *hentry; char key[MAX_CATNAME_LEN]; \
\
MemSet(key, 0, MAX_CATNAME_LEN); \
snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATNAME); \
hentry = (crosstab_HashEnt*) hash_search(crosstab_HashTable, \
key, HASH_REMOVE, NULL); \
if (hentry == NULL) \
elog(WARNING, "trying to delete function name that does not exist."); \
} while(0)
/* hash table */
typedef struct crosstab_hashent
{
char internal_catname[MAX_CATNAME_LEN];
crosstab_cat_desc *catdesc;
} crosstab_HashEnt;
/*
* normal_rand - return requested number of random values
* with a Gaussian (Normal) distribution.
*
* inputs are int numvals, float8 lower_bound, and float8 upper_bound
* returns float8
*/
PG_FUNCTION_INFO_V1(normal_rand);
Datum
normal_rand(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
int call_cntr;
int max_calls;
normal_rand_fctx *fctx;
float8 mean;
float8 stddev;
float8 carry_val;
bool use_carry;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function
* calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* total number of tuples to be returned */
funcctx->max_calls = PG_GETARG_UINT32(0);
/* allocate memory for user context */
fctx = (normal_rand_fctx *) palloc(sizeof(normal_rand_fctx));
/*
* Use fctx to keep track of upper and lower bounds from call to
* call. It will also be used to carry over the spare value we get
* from the Box-Muller algorithm so that we only actually
* calculate a new value every other call.
*/
fctx->mean = PG_GETARG_FLOAT8(1);
fctx->stddev = PG_GETARG_FLOAT8(2);
fctx->carry_val = 0;
fctx->use_carry = false;
funcctx->user_fctx = fctx;
/*
* we might actually get passed a negative number, but for this
* purpose it doesn't matter, just cast it as an unsigned value
*/
srandom(PG_GETARG_UINT32(3));
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
call_cntr = funcctx->call_cntr;
max_calls = funcctx->max_calls;
fctx = funcctx->user_fctx;
mean = fctx->mean;
stddev = fctx->stddev;
carry_val = fctx->carry_val;
use_carry = fctx->use_carry;
if (call_cntr < max_calls) /* do when there is more left to send */
{
float8 result;
if (use_carry)
{
/*
* reset use_carry and use second value obtained on last pass
*/
fctx->use_carry = false;
result = carry_val;
}
else
{
float8 normval_1;
float8 normval_2;
/* Get the next two normal values */
get_normal_pair(&normval_1, &normval_2);
/* use the first */
result = mean + (stddev * normval_1);
/* and save the second */
fctx->carry_val = mean + (stddev * normval_2);
fctx->use_carry = true;
}
/* send the result */
SRF_RETURN_NEXT(funcctx, Float8GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
/*
* get_normal_pair()
* Assigns normally distributed (Gaussian) values to a pair of provided
* parameters, with mean 0, standard deviation 1.
*
* This routine implements Algorithm P (Polar method for normal deviates)
* from Knuth's _The_Art_of_Computer_Programming_, Volume 2, 3rd ed., pages
* 122-126. Knuth cites his source as "The polar method", G. E. P. Box, M. E.
* Muller, and G. Marsaglia, _Annals_Math,_Stat._ 29 (1958), 610-611.
*
*/
static void
get_normal_pair(float8 *x1, float8 *x2)
{
float8 u1,
u2,
v1,
v2,
s;
do
{
u1 = (float8) random() / (float8) MAX_RANDOM_VALUE;
u2 = (float8) random() / (float8) MAX_RANDOM_VALUE;
v1 = (2.0 * u1) - 1.0;
v2 = (2.0 * u2) - 1.0;
s = v1 * v1 + v2 * v2;
} while (s >= 1.0);
if (s == 0)
{
*x1 = 0;
*x2 = 0;
}
else
{
s = sqrt((-2.0 * log(s)) / s);
*x1 = v1 * s;
*x2 = v2 * s;
}
}
/*
* crosstab - create a crosstab of rowids and values columns from a
* SQL statement returning one rowid column, one category column,
* and one value column.
*
* e.g. given sql which produces:
*
* rowid cat value
* ------+-------+-------
* row1 cat1 val1
* row1 cat2 val2
* row1 cat3 val3
* row1 cat4 val4
* row2 cat1 val5
* row2 cat2 val6
* row2 cat3 val7
* row2 cat4 val8
*
* crosstab returns:
* <===== values columns =====>
* rowid cat1 cat2 cat3 cat4
* ------+-------+-------+-------+-------
* row1 val1 val2 val3 val4
* row2 val5 val6 val7 val8
*
* NOTES:
* 1. SQL result must be ordered by 1,2.
* 2. The number of values columns depends on the tuple description
* of the function's declared return type.
* 2. Missing values (i.e. not enough adjacent rows of same rowid to
* fill the number of result values columns) are filled in with nulls.
* 3. Extra values (i.e. too many adjacent rows of same rowid to fill
* the number of result values columns) are skipped.
* 4. Rows with all nulls in the values columns are skipped.
*/
PG_FUNCTION_INFO_V1(crosstab);
Datum
crosstab(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
TupleDesc ret_tupdesc;
int call_cntr;
int max_calls;
TupleTableSlot *slot;
AttInMetadata *attinmeta;
SPITupleTable *spi_tuptable = NULL;
TupleDesc spi_tupdesc;
char *lastrowid = NULL;
crosstab_fctx *fctx;
int i;
int num_categories;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
char *sql = GET_STR(PG_GETARG_TEXT_P(0));
Oid funcid = fcinfo->flinfo->fn_oid;
Oid functypeid;
char functyptype;
TupleDesc tupdesc = NULL;
int ret;
int proc;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function
* calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
elog(ERROR, "crosstab: SPI_connect returned %d", ret);
/* Retrieve the desired rows */
ret = SPI_exec(sql, 0);
proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
spi_tuptable = SPI_tuptable;
spi_tupdesc = spi_tuptable->tupdesc;
/*
* The provided SQL query must always return three columns.
*
* 1. rowname the label or identifier for each row in the final
* result 2. category the label or identifier for each column
* in the final result 3. values the value for each column
* in the final result
*/
if (spi_tupdesc->natts != 3)
elog(ERROR, "crosstab: provided SQL must return 3 columns;"
" a rowid, a category, and a values column");
}
else
{
/* no qualifying tuples */
SPI_finish();
SRF_RETURN_DONE(funcctx);
}
/* SPI switches context on us, so reset it */
MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* get the typeid that represents our return type */
functypeid = get_func_rettype(funcid);
/* check typtype to see if we have a predetermined return type */
functyptype = get_typtype(functypeid);
if (functyptype == 'c')
{
/* Build a tuple description for a functypeid tuple */
tupdesc = TypeGetTupleDesc(functypeid, NIL);
}
else if (functyptype == 'p' && functypeid == RECORDOID)
{
if (fcinfo->nargs != 2)
elog(ERROR, "Wrong number of arguments specified for function");
else
{
int num_categories = PG_GETARG_INT32(1);
tupdesc = make_crosstab_tupledesc(spi_tupdesc, num_categories);
}
}
else
elog(ERROR, "crosstab: return type must be a row type");
/*
* Check that return tupdesc is compatible with the one we got
* from ret_relname, at least based on number and type of
* attributes
*/
if (!compatCrosstabTupleDescs(tupdesc, spi_tupdesc))
elog(ERROR, "crosstab: return and sql tuple descriptions are"
" incompatible");
/* allocate a slot for a tuple with this tupdesc */
slot = TupleDescGetSlot(tupdesc);
/* assign slot to function context */
funcctx->slot = slot;
/*
* Generate attribute metadata needed later to produce tuples from
* raw C strings
*/
attinmeta = TupleDescGetAttInMetadata(tupdesc);
funcctx->attinmeta = attinmeta;
/* allocate memory for user context */
fctx = (crosstab_fctx *) palloc(sizeof(crosstab_fctx));
/*
* Save spi data for use across calls
*/
fctx->spi_tuptable = spi_tuptable;
fctx->lastrowid = NULL;
funcctx->user_fctx = fctx;
/* total number of tuples to be returned */
funcctx->max_calls = proc;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* initialize per-call variables
*/
call_cntr = funcctx->call_cntr;
max_calls = funcctx->max_calls;
/* return slot for our tuple */
slot = funcctx->slot;
/* user context info */
fctx = (crosstab_fctx *) funcctx->user_fctx;
lastrowid = fctx->lastrowid;
spi_tuptable = fctx->spi_tuptable;
/* the sql tuple */
spi_tupdesc = spi_tuptable->tupdesc;
/* attribute return type and return tuple description */
attinmeta = funcctx->attinmeta;
ret_tupdesc = attinmeta->tupdesc;
/* the return tuple always must have 1 rowid + num_categories columns */
num_categories = ret_tupdesc->natts - 1;
if (call_cntr < max_calls) /* do when there is more left to send */
{
HeapTuple tuple;
Datum result;
char **values;
bool allnulls = true;
while (true)
{
/* allocate space */
values = (char **) palloc((1 + num_categories) * sizeof(char *));
/* and make sure it's clear */
memset(values, '\0', (1 + num_categories) * sizeof(char *));
/*
* now loop through the sql results and assign each value in
* sequence to the next category
*/
for (i = 0; i < num_categories; i++)
{
HeapTuple spi_tuple;
char *rowid = NULL;
/* see if we've gone too far already */
if (call_cntr >= max_calls)
break;
/* get the next sql result tuple */
spi_tuple = spi_tuptable->vals[call_cntr];
/* get the rowid from the current sql result tuple */
rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
/*
* If this is the first pass through the values for this
* rowid set it, otherwise make sure it hasn't changed on
* us. Also check to see if the rowid is the same as that
* of the last tuple sent -- if so, skip this tuple
* entirely
*/
if (i == 0)
values[0] = pstrdup(rowid);
if ((rowid != NULL) && (strcmp(rowid, values[0]) == 0))
{
if ((lastrowid != NULL) && (strcmp(rowid, lastrowid) == 0))
break;
else if (allnulls == true)
allnulls = false;
/*
* Get the next category item value, which is alway
* attribute number three.
*
* Be careful to sssign the value to the array index
* based on which category we are presently
* processing.
*/
values[1 + i] = SPI_getvalue(spi_tuple, spi_tupdesc, 3);
/*
* increment the counter since we consume a row for
* each category, but not for last pass because the
* API will do that for us
*/
if (i < (num_categories - 1))
call_cntr = ++funcctx->call_cntr;
}
else
{
/*
* We'll fill in NULLs for the missing values, but we
* need to decrement the counter since this sql result
* row doesn't belong to the current output tuple.
*/
call_cntr = --funcctx->call_cntr;
break;
}
if (rowid != NULL)
xpfree(rowid);
}
xpfree(fctx->lastrowid);
if (values[0] != NULL)
{
/*
* switch to memory context appropriate for multiple
* function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
lastrowid = fctx->lastrowid = pstrdup(values[0]);
MemoryContextSwitchTo(oldcontext);
}
if (!allnulls)
{
/* build the tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);
/* make the tuple into a datum */
result = TupleGetDatum(slot, tuple);
/* Clean up */
for (i = 0; i < num_categories + 1; i++)
if (values[i] != NULL)
xpfree(values[i]);
xpfree(values);
SRF_RETURN_NEXT(funcctx, result);
}
else
{
/*
* Skipping this tuple entirely, but we need to advance
* the counter like the API would if we had returned one.
*/
call_cntr = ++funcctx->call_cntr;
/* we'll start over at the top */
xpfree(values);
/* see if we've gone too far already */
if (call_cntr >= max_calls)
{
/* release SPI related resources */
SPI_finish();
SRF_RETURN_DONE(funcctx);
}
}
}
}
else
/* do when there is no more left */
{
/* release SPI related resources */
SPI_finish();
SRF_RETURN_DONE(funcctx);
}
}
/*
* crosstab_hash - reimplement crosstab as materialized function and
* properly deal with missing values (i.e. don't pack remaining
* values to the left)
*
* crosstab - create a crosstab of rowids and values columns from a
* SQL statement returning one rowid column, one category column,
* and one value column.
*
* e.g. given sql which produces:
*
* rowid cat value
* ------+-------+-------
* row1 cat1 val1
* row1 cat2 val2
* row1 cat4 val4
* row2 cat1 val5
* row2 cat2 val6
* row2 cat3 val7
* row2 cat4 val8
*
* crosstab returns:
* <===== values columns =====>
* rowid cat1 cat2 cat3 cat4
* ------+-------+-------+-------+-------
* row1 val1 val2 null val4
* row2 val5 val6 val7 val8
*
* NOTES:
* 1. SQL result must be ordered by 1.
* 2. The number of values columns depends on the tuple description
* of the function's declared return type.
* 2. Missing values (i.e. missing category) are filled in with nulls.
* 3. Extra values (i.e. not in category results) are skipped.
*/
PG_FUNCTION_INFO_V1(crosstab_hash);
Datum
crosstab_hash(PG_FUNCTION_ARGS)
{
char *sql = GET_STR(PG_GETARG_TEXT_P(0));
char *cats_sql = GET_STR(PG_GETARG_TEXT_P(1));
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupdesc;
MemoryContext per_query_ctx;
MemoryContext oldcontext;
int num_categories;
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
elog(ERROR, "crosstab: materialize mode required, but it is not "
"allowed in this context");
per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* get the requested return tuple description */
tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
/*
* Check to make sure we have a reasonable tuple descriptor
*
* Note we will attempt to coerce the values into whatever
* the return attribute type is and depend on the "in"
* function to complain if needed.
*/
if (tupdesc->natts < 2)
elog(ERROR, "crosstab: query-specified return tuple and " \
"crosstab function are not compatible");
/* load up the categories hash table */
num_categories = load_categories_hash(cats_sql, per_query_ctx);
/* let the caller know we're sending back a tuplestore */
rsinfo->returnMode = SFRM_Materialize;
/* now go build it */
rsinfo->setResult = get_crosstab_tuplestore(sql,
num_categories,
tupdesc,
per_query_ctx);
/*
* SFRM_Materialize mode expects us to return a NULL Datum. The actual
* tuples are in our tuplestore and passed back through
* rsinfo->setResult. rsinfo->setDesc is set to the tuple description
* that we actually used to build our tuples with, so the caller can
* verify we did what it was expecting.
*/
rsinfo->setDesc = tupdesc;
MemoryContextSwitchTo(oldcontext);
return (Datum) 0;
}
/*
* load up the categories hash table
*/
static int
load_categories_hash(char *cats_sql, MemoryContext per_query_ctx)
{
HASHCTL ctl;
int ret;
int proc;
MemoryContext SPIcontext;
int num_categories = 0;
/* initialize the category hash table */
ctl.keysize = MAX_CATNAME_LEN;
ctl.entrysize = sizeof(crosstab_HashEnt);
/*
* use INIT_CATS, defined above as a guess of how
* many hash table entries to create, initially
*/
crosstab_HashTable = hash_create("crosstab hash", INIT_CATS, &ctl, HASH_ELEM);
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
elog(ERROR, "load_categories_hash: SPI_connect returned %d", ret);
/* Retrieve the category name rows */
ret = SPI_exec(cats_sql, 0);
num_categories = proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
SPITupleTable *spi_tuptable = SPI_tuptable;
TupleDesc spi_tupdesc = spi_tuptable->tupdesc;
int i;
/*
* The provided categories SQL query must always return one column:
* category - the label or identifier for each column
*/
if (spi_tupdesc->natts != 1)
elog(ERROR, "load_categories_hash: provided categories SQL must " \
"return 1 column of at least one row");
for (i = 0; i < proc; i++)
{
crosstab_cat_desc *catdesc;
char *catname;
HeapTuple spi_tuple;
/* get the next sql result tuple */
spi_tuple = spi_tuptable->vals[i];
/* get the category from the current sql result tuple */
catname = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
SPIcontext = MemoryContextSwitchTo(per_query_ctx);
catdesc = (crosstab_cat_desc *) palloc(sizeof(crosstab_cat_desc));
catdesc->catname = catname;
catdesc->attidx = i;
/* Add the proc description block to the hashtable */
crosstab_HashTableInsert(catdesc);
MemoryContextSwitchTo(SPIcontext);
}
}
else
{
/* no qualifying tuples */
SPI_finish();
elog(ERROR, "load_categories_hash: provided categories SQL must " \
"return 1 column of at least one row");
}
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "load_categories_hash: SPI_finish() failed");
return num_categories;
}
/*
* create and populate the crosstab tuplestore using the provided source query
*/
static Tuplestorestate *
get_crosstab_tuplestore(char *sql,
int num_categories,
TupleDesc tupdesc,
MemoryContext per_query_ctx)
{
Tuplestorestate *tupstore;
AttInMetadata *attinmeta = TupleDescGetAttInMetadata(tupdesc);
char **values;
HeapTuple tuple;
int ret;
int proc;
MemoryContext SPIcontext;
/* initialize our tuplestore */
tupstore = tuplestore_begin_heap(true, false, SortMem);
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
elog(ERROR, "get_crosstab_tuplestore: SPI_connect returned %d", ret);
/* Now retrieve the crosstab source rows */
ret = SPI_exec(sql, 0);
proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
SPITupleTable *spi_tuptable = SPI_tuptable;
TupleDesc spi_tupdesc = spi_tuptable->tupdesc;
int ncols = spi_tupdesc->natts;
char *rowid;
char *lastrowid = NULL;
int i, j;
int result_ncols;
/*
* The provided SQL query must always return at least three columns:
*
* 1. rowname the label for each row - column 1 in the final result
* 2. category the label for each value-column in the final result
* 3. value the values used to populate the value-columns
*
* If there are more than three columns, the last two are taken as
* "category" and "values". The first column is taken as "rowname".
* Additional columns (2 thru N-2) are assumed the same for the same
* "rowname", and are copied into the result tuple from the first
* time we encounter a particular rowname.
*/
if (ncols < 3)
elog(ERROR, "get_crosstab_tuplestore: provided source SQL must " \
"return at least 3 columns; a rowid, a category, " \
"and a values column");
result_ncols = (ncols - 2) + num_categories;
/* Recheck to make sure we tuple descriptor still looks reasonable */
if (tupdesc->natts != result_ncols)
elog(ERROR, "get_crosstab_tuplestore: query-specified return " \
"tuple has %d columns but crosstab returns %d",
tupdesc->natts, result_ncols);
/* allocate space */
values = (char **) palloc(result_ncols * sizeof(char *));
/* and make sure it's clear */
memset(values, '\0', result_ncols * sizeof(char *));
for (i = 0; i < proc; i++)
{
HeapTuple spi_tuple;
crosstab_cat_desc *catdesc;
char *catname;
/* get the next sql result tuple */
spi_tuple = spi_tuptable->vals[i];
/* get the rowid from the current sql result tuple */
rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
/* if rowid is null, skip this tuple entirely */
if (rowid == NULL)
continue;
/*
* if we're on a new output row, grab the column values up to
* column N-2 now
*/
if ((lastrowid == NULL) || (strcmp(rowid, lastrowid) != 0))
{
/*
* a new row means we need to flush the old one first,
* unless we're on the very first row
*/
if (lastrowid != NULL)
{
/* switch to appropriate context while storing the tuple */
SPIcontext = MemoryContextSwitchTo(per_query_ctx);
/* rowid changed, flush the previous output row */
tuple = BuildTupleFromCStrings(attinmeta, values);
tuplestore_puttuple(tupstore, tuple);
for (j = 0; j < result_ncols; j++)
xpfree(values[j]);
/* now reset the context */
MemoryContextSwitchTo(SPIcontext);
}
values[0] = rowid;
for (j = 1; j < ncols - 2; j++)
values[j] = SPI_getvalue(spi_tuple, spi_tupdesc, j + 1);
}
/* look up the category and fill in the appropriate column */
catname = SPI_getvalue(spi_tuple, spi_tupdesc, ncols - 1);
if (catname != NULL)
{
crosstab_HashTableLookup(catname, catdesc);
if (catdesc)
values[catdesc->attidx + ncols - 2] =
SPI_getvalue(spi_tuple, spi_tupdesc, ncols);
}
xpfree(lastrowid);
lastrowid = pstrdup(rowid);
}
/* switch to appropriate context while storing the tuple */
SPIcontext = MemoryContextSwitchTo(per_query_ctx);
/* flush the last output row */
tuple = BuildTupleFromCStrings(attinmeta, values);
tuplestore_puttuple(tupstore, tuple);
/* now reset the context */
MemoryContextSwitchTo(SPIcontext);
}
else
{
/* no qualifying tuples */
SPI_finish();
}
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "get_crosstab_tuplestore: SPI_finish() failed");
tuplestore_donestoring(tupstore);
return tupstore;
}
/*
* connectby_text - produce a result set from a hierarchical (parent/child)
* table.
*
* e.g. given table foo:
*
* keyid parent_keyid
* ------+--------------
* row1 NULL
* row2 row1
* row3 row1
* row4 row2
* row5 row2
* row6 row4
* row7 row3
* row8 row6
* row9 row5
*
*
* connectby(text relname, text keyid_fld, text parent_keyid_fld,
* text start_with, int max_depth [, text branch_delim])
* connectby('foo', 'keyid', 'parent_keyid', 'row2', 0, '~') returns:
*
* keyid parent_id level branch
* ------+-----------+--------+-----------------------
* row2 NULL 0 row2
* row4 row2 1 row2~row4
* row6 row4 2 row2~row4~row6
* row8 row6 3 row2~row4~row6~row8
* row5 row2 1 row2~row5
* row9 row5 2 row2~row5~row9
*
*/
PG_FUNCTION_INFO_V1(connectby_text);
#define CONNECTBY_NCOLS 4
#define CONNECTBY_NCOLS_NOBRANCH 3
Datum
connectby_text(PG_FUNCTION_ARGS)
{
char *relname = GET_STR(PG_GETARG_TEXT_P(0));
char *key_fld = GET_STR(PG_GETARG_TEXT_P(1));
char *parent_key_fld = GET_STR(PG_GETARG_TEXT_P(2));
char *start_with = GET_STR(PG_GETARG_TEXT_P(3));
int max_depth = PG_GETARG_INT32(4);
char *branch_delim = NULL;
bool show_branch = false;
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupdesc;
AttInMetadata *attinmeta;
MemoryContext per_query_ctx;
MemoryContext oldcontext;
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
elog(ERROR, "connectby: materialize mode required, but it is not "
"allowed in this context");
if (fcinfo->nargs == 6)
{
branch_delim = GET_STR(PG_GETARG_TEXT_P(5));
show_branch = true;
}
else
/* default is no show, tilde for the delimiter */
branch_delim = pstrdup("~");
per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* get the requested return tuple description */
tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
/* does it meet our needs */
validateConnectbyTupleDesc(tupdesc, show_branch);
/* OK, use it then */
attinmeta = TupleDescGetAttInMetadata(tupdesc);
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
elog(ERROR, "connectby requires Materialize mode, but it is not "
"allowed in this context");
/* OK, go to work */
rsinfo->returnMode = SFRM_Materialize;
rsinfo->setResult = connectby(relname,
key_fld,
parent_key_fld,
branch_delim,
start_with,
max_depth,
show_branch,
per_query_ctx,
attinmeta);
rsinfo->setDesc = tupdesc;
MemoryContextSwitchTo(oldcontext);
/*
* SFRM_Materialize mode expects us to return a NULL Datum. The actual
* tuples are in our tuplestore and passed back through
* rsinfo->setResult. rsinfo->setDesc is set to the tuple description
* that we actually used to build our tuples with, so the caller can
* verify we did what it was expecting.
*/
return (Datum) 0;
}
/*
* connectby - does the real work for connectby_text()
*/
static Tuplestorestate *
connectby(char *relname,
char *key_fld,
char *parent_key_fld,
char *branch_delim,
char *start_with,
int max_depth,
bool show_branch,
MemoryContext per_query_ctx,
AttInMetadata *attinmeta)
{
Tuplestorestate *tupstore = NULL;
int ret;
MemoryContext oldcontext;
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
elog(ERROR, "connectby: SPI_connect returned %d", ret);
/* switch to longer term context to create the tuple store */
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* initialize our tuplestore */
tupstore = tuplestore_begin_heap(true, false, SortMem);
MemoryContextSwitchTo(oldcontext);
/* now go get the whole tree */
tupstore = build_tuplestore_recursively(key_fld,
parent_key_fld,
relname,
branch_delim,
start_with,
start_with, /* current_branch */
0, /* initial level is 0 */
max_depth,
show_branch,
per_query_ctx,
attinmeta,
tupstore);
SPI_finish();
return tupstore;
}
static Tuplestorestate *
build_tuplestore_recursively(char *key_fld,
char *parent_key_fld,
char *relname,
char *branch_delim,
char *start_with,
char *branch,
int level,
int max_depth,
bool show_branch,
MemoryContext per_query_ctx,
AttInMetadata *attinmeta,
Tuplestorestate *tupstore)
{
TupleDesc tupdesc = attinmeta->tupdesc;
MemoryContext oldcontext;
StringInfo sql = makeStringInfo();
int ret;
int proc;
if (max_depth > 0 && level > max_depth)
return tupstore;
/* Build initial sql statement */
appendStringInfo(sql, "SELECT %s, %s FROM %s WHERE %s = '%s' AND %s IS NOT NULL",
key_fld,
parent_key_fld,
relname,
parent_key_fld,
start_with,
key_fld);
/* Retrieve the desired rows */
ret = SPI_exec(sql->data, 0);
proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
HeapTuple tuple;
HeapTuple spi_tuple;
SPITupleTable *tuptable = SPI_tuptable;
TupleDesc spi_tupdesc = tuptable->tupdesc;
int i;
char *current_key;
char *current_key_parent;
char current_level[INT32_STRLEN];
char *current_branch;
char **values;
StringInfo branchstr = NULL;
StringInfo chk_branchstr = NULL;
StringInfo chk_current_key = NULL;
/* start a new branch */
branchstr = makeStringInfo();
/* need these to check for recursion */
chk_branchstr = makeStringInfo();
chk_current_key = makeStringInfo();
if (show_branch)
values = (char **) palloc(CONNECTBY_NCOLS * sizeof(char *));
else
values = (char **) palloc(CONNECTBY_NCOLS_NOBRANCH * sizeof(char *));
/* First time through, do a little setup */
if (level == 0)
{
/*
* Check that return tupdesc is compatible with the one we got
* from the query, but only at level 0 -- no need to check
* more than once
*/
if (!compatConnectbyTupleDescs(tupdesc, spi_tupdesc))
elog(ERROR, "connectby: return and sql tuple descriptions are "
"incompatible");
/* root value is the one we initially start with */
values[0] = start_with;
/* root value has no parent */
values[1] = NULL;
/* root level is 0 */
sprintf(current_level, "%d", level);
values[2] = current_level;
/* root branch is just starting root value */
if (show_branch)
values[3] = start_with;
/* construct the tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);
/* switch to long lived context while storing the tuple */
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* now store it */
tuplestore_puttuple(tupstore, tuple);
/* now reset the context */
MemoryContextSwitchTo(oldcontext);
/* increment level */
level++;
}
for (i = 0; i < proc; i++)
{
/* initialize branch for this pass */
appendStringInfo(branchstr, "%s", branch);
appendStringInfo(chk_branchstr, "%s%s%s", branch_delim, branch, branch_delim);
/* get the next sql result tuple */
spi_tuple = tuptable->vals[i];
/* get the current key and parent */
current_key = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
appendStringInfo(chk_current_key, "%s%s%s", branch_delim, current_key, branch_delim);
current_key_parent = pstrdup(SPI_getvalue(spi_tuple, spi_tupdesc, 2));
/* get the current level */
sprintf(current_level, "%d", level);
/* check to see if this key is also an ancestor */
if (strstr(chk_branchstr->data, chk_current_key->data))
elog(ERROR, "infinite recursion detected");
/* OK, extend the branch */
appendStringInfo(branchstr, "%s%s", branch_delim, current_key);
current_branch = branchstr->data;
/* build a tuple */
values[0] = pstrdup(current_key);
values[1] = current_key_parent;
values[2] = current_level;
if (show_branch)
values[3] = current_branch;
tuple = BuildTupleFromCStrings(attinmeta, values);
xpfree(current_key);
xpfree(current_key_parent);
/* switch to long lived context while storing the tuple */
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* store the tuple for later use */
tuplestore_puttuple(tupstore, tuple);
/* now reset the context */
MemoryContextSwitchTo(oldcontext);
heap_freetuple(tuple);
/* recurse using current_key_parent as the new start_with */
tupstore = build_tuplestore_recursively(key_fld,
parent_key_fld,
relname,
branch_delim,
values[0],
current_branch,
level + 1,
max_depth,
show_branch,
per_query_ctx,
attinmeta,
tupstore);
/* reset branch for next pass */
xpfree(branchstr->data);
initStringInfo(branchstr);
xpfree(chk_branchstr->data);
initStringInfo(chk_branchstr);
xpfree(chk_current_key->data);
initStringInfo(chk_current_key);
}
}
return tupstore;
}
/*
* Check expected (query runtime) tupdesc suitable for Connectby
*/
static void
validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch)
{
/* are there the correct number of columns */
if (show_branch)
{
if (tupdesc->natts != CONNECTBY_NCOLS)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"wrong number of columns");
}
else
{
if (tupdesc->natts != CONNECTBY_NCOLS_NOBRANCH)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"wrong number of columns");
}
/* check that the types of the first two columns match */
if (tupdesc->attrs[0]->atttypid != tupdesc->attrs[1]->atttypid)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"first two columns must be the same type");
/* check that the type of the third column is INT4 */
if (tupdesc->attrs[2]->atttypid != INT4OID)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"third column must be type %s", format_type_be(INT4OID));
/* check that the type of the forth column is TEXT if applicable */
if (show_branch && tupdesc->attrs[3]->atttypid != TEXTOID)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"third column must be type %s", format_type_be(TEXTOID));
/* OK, the tupdesc is valid for our purposes */
}
/*
* Check if spi sql tupdesc and return tupdesc are compatible
*/
static bool
compatConnectbyTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc)
{
Oid ret_atttypid;
Oid sql_atttypid;
/* check the key_fld types match */
ret_atttypid = ret_tupdesc->attrs[0]->atttypid;
sql_atttypid = sql_tupdesc->attrs[0]->atttypid;
if (ret_atttypid != sql_atttypid)
elog(ERROR, "compatConnectbyTupleDescs: SQL key field datatype does "
"not match return key field datatype");
/* check the parent_key_fld types match */
ret_atttypid = ret_tupdesc->attrs[1]->atttypid;
sql_atttypid = sql_tupdesc->attrs[1]->atttypid;
if (ret_atttypid != sql_atttypid)
elog(ERROR, "compatConnectbyTupleDescs: SQL parent key field datatype "
"does not match return parent key field datatype");
/* OK, the two tupdescs are compatible for our purposes */
return true;
}
/*
* Check if two tupdescs match in type of attributes
*/
static bool
compatCrosstabTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc)
{
int i;
Form_pg_attribute ret_attr;
Oid ret_atttypid;
Form_pg_attribute sql_attr;
Oid sql_atttypid;
/* check the rowid types match */
ret_atttypid = ret_tupdesc->attrs[0]->atttypid;
sql_atttypid = sql_tupdesc->attrs[0]->atttypid;
if (ret_atttypid != sql_atttypid)
elog(ERROR, "compatCrosstabTupleDescs: SQL rowid datatype does not match"
" return rowid datatype");
/*
* - attribute [1] of the sql tuple is the category; no need to check
* it - attribute [2] of the sql tuple should match attributes [1] to
* [natts] of the return tuple
*/
sql_attr = sql_tupdesc->attrs[2];
for (i = 1; i < ret_tupdesc->natts; i++)
{
ret_attr = ret_tupdesc->attrs[i];
if (ret_attr->atttypid != sql_attr->atttypid)
return false;
}
/* OK, the two tupdescs are compatible for our purposes */
return true;
}
static TupleDesc
make_crosstab_tupledesc(TupleDesc spi_tupdesc, int num_categories)
{
Form_pg_attribute sql_attr;
Oid sql_atttypid;
TupleDesc tupdesc;
int natts;
AttrNumber attnum;
char attname[NAMEDATALEN];
int i;
/*
* We need to build a tuple description with one column for the
* rowname, and num_categories columns for the values. Each must be of
* the same type as the corresponding spi result input column.
*/
natts = num_categories + 1;
tupdesc = CreateTemplateTupleDesc(natts, false);
/* first the rowname column */
attnum = 1;
sql_attr = spi_tupdesc->attrs[0];
sql_atttypid = sql_attr->atttypid;
strcpy(attname, "rowname");
TupleDescInitEntry(tupdesc, attnum, attname, sql_atttypid,
-1, 0, false);
/* now the category values columns */
sql_attr = spi_tupdesc->attrs[2];
sql_atttypid = sql_attr->atttypid;
for (i = 0; i < num_categories; i++)
{
attnum++;
sprintf(attname, "category_%d", i + 1);
TupleDescInitEntry(tupdesc, attnum, attname, sql_atttypid,
-1, 0, false);
}
return tupdesc;
}