mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-03-13 19:57:53 +08:00
1479 lines
34 KiB
C
1479 lines
34 KiB
C
/*
|
|
* This file is in the public domain, so clarified as of
|
|
* 1996-06-05 by Arthur David Olson.
|
|
*
|
|
* IDENTIFICATION
|
|
* src/timezone/localtime.c
|
|
*/
|
|
|
|
/*
|
|
* Leap second handling from Bradley White.
|
|
* POSIX-style TZ environment variable handling from Guy Harris.
|
|
*/
|
|
|
|
/* this file needs to build in both frontend and backend contexts */
|
|
#include "c.h"
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include "private.h"
|
|
#include "pgtz.h"
|
|
#include "tzfile.h"
|
|
|
|
|
|
#ifndef WILDABBR
|
|
/*----------
|
|
* Someone might make incorrect use of a time zone abbreviation:
|
|
* 1. They might reference tzname[0] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 2. They might reference tzname[1] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 3. They might reference tzname[1] after setting to a time zone
|
|
* in which Daylight Saving Time is never observed.
|
|
* 4. They might reference tzname[0] after setting to a time zone
|
|
* in which Standard Time is never observed.
|
|
* 5. They might reference tm.TM_ZONE after calling offtime.
|
|
* What's best to do in the above cases is open to debate;
|
|
* for now, we just set things up so that in any of the five cases
|
|
* WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
* string "tzname[0] used before set", and similarly for the other cases.
|
|
* And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
* manual page of what this "time zone abbreviation" means (doing this so
|
|
* that tzname[0] has the "normal" length of three characters).
|
|
*----------
|
|
*/
|
|
#define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static char wildabbr[] = WILDABBR;
|
|
|
|
static const char gmt[] = "GMT";
|
|
|
|
/*
|
|
* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
* We default to US rules as of 1999-08-17.
|
|
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
|
|
* implementation dependent; for historical reasons, US rules are a
|
|
* common default.
|
|
*/
|
|
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
|
|
|
|
struct rule
|
|
{
|
|
int r_type; /* type of rule--see below */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
long r_time; /* transition time of rule */
|
|
};
|
|
|
|
#define JULIAN_DAY 0 /* Jn - Julian day */
|
|
#define DAY_OF_YEAR 1 /* n - day of year */
|
|
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
|
|
|
|
/*
|
|
* Prototypes for static functions.
|
|
*/
|
|
|
|
static long detzcode(const char *codep);
|
|
static pg_time_t detzcode64(const char *codep);
|
|
static int differ_by_repeat(pg_time_t t1, pg_time_t t0);
|
|
static const char *getzname(const char *strp);
|
|
static const char *getqzname(const char *strp, int delim);
|
|
static const char *getnum(const char *strp, int *nump, int min, int max);
|
|
static const char *getsecs(const char *strp, long *secsp);
|
|
static const char *getoffset(const char *strp, long *offsetp);
|
|
static const char *getrule(const char *strp, struct rule * rulep);
|
|
static void gmtload(struct state * sp);
|
|
static struct pg_tm *gmtsub(const pg_time_t *timep, long offset,
|
|
struct pg_tm * tmp);
|
|
static struct pg_tm *localsub(const pg_time_t *timep, long offset,
|
|
struct pg_tm * tmp, const pg_tz *tz);
|
|
static int increment_overflow(int *number, int delta);
|
|
static pg_time_t transtime(pg_time_t janfirst, int year,
|
|
const struct rule * rulep, long offset);
|
|
static int typesequiv(const struct state * sp, int a, int b);
|
|
static struct pg_tm *timesub(const pg_time_t *timep, long offset,
|
|
const struct state * sp, struct pg_tm * tmp);
|
|
|
|
/* GMT timezone */
|
|
static struct state gmtmem;
|
|
|
|
#define gmtptr (&gmtmem)
|
|
|
|
|
|
static int gmt_is_set = 0;
|
|
|
|
/*
|
|
* Section 4.12.3 of X3.159-1989 requires that
|
|
* Except for the strftime function, these functions [asctime,
|
|
* ctime, gmtime, localtime] return values in one of two static
|
|
* objects: a broken-down time structure and an array of char.
|
|
* Thanks to Paul Eggert for noting this.
|
|
*/
|
|
|
|
static struct pg_tm tm;
|
|
|
|
|
|
static long
|
|
detzcode(const char *codep)
|
|
{
|
|
long result;
|
|
int i;
|
|
|
|
result = (codep[0] & 0x80) ? ~0L : 0;
|
|
for (i = 0; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
return result;
|
|
}
|
|
|
|
static pg_time_t
|
|
detzcode64(const char *codep)
|
|
{
|
|
pg_time_t result;
|
|
int i;
|
|
|
|
result = (codep[0] & 0x80) ? (~(int64) 0) : 0;
|
|
for (i = 0; i < 8; ++i)
|
|
result = result * 256 + (codep[i] & 0xff);
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
differ_by_repeat(pg_time_t t1, pg_time_t t0)
|
|
{
|
|
if (TYPE_INTEGRAL(pg_time_t) &&
|
|
TYPE_BIT(pg_time_t) -TYPE_SIGNED(pg_time_t) <SECSPERREPEAT_BITS)
|
|
return 0;
|
|
return t1 - t0 == SECSPERREPEAT;
|
|
}
|
|
|
|
int
|
|
tzload(const char *name, char *canonname, struct state * sp, int doextend)
|
|
{
|
|
const char *p;
|
|
int i;
|
|
int fid;
|
|
int stored;
|
|
int nread;
|
|
union
|
|
{
|
|
struct tzhead tzhead;
|
|
char buf[2 * sizeof(struct tzhead) +
|
|
2 * sizeof *sp +
|
|
4 * TZ_MAX_TIMES];
|
|
} u;
|
|
|
|
sp->goback = sp->goahead = FALSE;
|
|
if (name == NULL && (name = TZDEFAULT) == NULL)
|
|
return -1;
|
|
if (name[0] == ':')
|
|
++name;
|
|
fid = pg_open_tzfile(name, canonname);
|
|
if (fid < 0)
|
|
return -1;
|
|
nread = read(fid, u.buf, sizeof u.buf);
|
|
if (close(fid) != 0 || nread <= 0)
|
|
return -1;
|
|
for (stored = 4; stored <= 8; stored *= 2)
|
|
{
|
|
int ttisstdcnt;
|
|
int ttisgmtcnt;
|
|
|
|
ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
|
|
ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
|
|
sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
|
|
sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
|
|
sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
|
|
sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
|
|
p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
|
|
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
|
|
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
|
|
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
|
|
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
|
|
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
|
|
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
|
|
return -1;
|
|
if (nread - (p - u.buf) <
|
|
sp->timecnt * stored + /* ats */
|
|
sp->timecnt + /* types */
|
|
sp->typecnt * 6 + /* ttinfos */
|
|
sp->charcnt + /* chars */
|
|
sp->leapcnt * (stored + 4) + /* lsinfos */
|
|
ttisstdcnt + /* ttisstds */
|
|
ttisgmtcnt) /* ttisgmts */
|
|
return -1;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
sp->ats[i] = (stored == 4) ? detzcode(p) : detzcode64(p);
|
|
p += stored;
|
|
}
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
sp->types[i] = (unsigned char) *p++;
|
|
if (sp->types[i] >= sp->typecnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
ttisp->tt_isdst = (unsigned char) *p++;
|
|
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
|
|
return -1;
|
|
ttisp->tt_abbrind = (unsigned char) *p++;
|
|
if (ttisp->tt_abbrind < 0 ||
|
|
ttisp->tt_abbrind > sp->charcnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
for (i = 0; i < sp->leapcnt; ++i)
|
|
{
|
|
struct lsinfo *lsisp;
|
|
|
|
lsisp = &sp->lsis[i];
|
|
lsisp->ls_trans = (stored == 4) ? detzcode(p) : detzcode64(p);
|
|
p += stored;
|
|
lsisp->ls_corr = detzcode(p);
|
|
p += 4;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = FALSE;
|
|
else
|
|
{
|
|
ttisp->tt_ttisstd = *p++;
|
|
if (ttisp->tt_ttisstd != TRUE &&
|
|
ttisp->tt_ttisstd != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
ttisp->tt_ttisgmt = FALSE;
|
|
else
|
|
{
|
|
ttisp->tt_ttisgmt = *p++;
|
|
if (ttisp->tt_ttisgmt != TRUE &&
|
|
ttisp->tt_ttisgmt != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Out-of-sort ats should mean we're running on a signed time_t system
|
|
* but using a data file with unsigned values (or vice versa).
|
|
*/
|
|
for (i = 0; i < sp->timecnt - 2; ++i)
|
|
if (sp->ats[i] > sp->ats[i + 1])
|
|
{
|
|
++i;
|
|
if (TYPE_SIGNED(pg_time_t))
|
|
{
|
|
/*
|
|
* Ignore the end (easy).
|
|
*/
|
|
sp->timecnt = i;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Ignore the beginning (harder).
|
|
*/
|
|
int j;
|
|
|
|
for (j = 0; j + i < sp->timecnt; ++j)
|
|
{
|
|
sp->ats[j] = sp->ats[j + i];
|
|
sp->types[j] = sp->types[j + i];
|
|
}
|
|
sp->timecnt = j;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this is an old file, we're done.
|
|
*/
|
|
if (u.tzhead.tzh_version[0] == '\0')
|
|
break;
|
|
nread -= p - u.buf;
|
|
for (i = 0; i < nread; ++i)
|
|
u.buf[i] = p[i];
|
|
|
|
/*
|
|
* If this is a narrow integer time_t system, we're done.
|
|
*/
|
|
if (stored >= (int) sizeof(pg_time_t) && TYPE_INTEGRAL(pg_time_t))
|
|
break;
|
|
}
|
|
if (doextend && nread > 2 &&
|
|
u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES)
|
|
{
|
|
struct state ts;
|
|
int result;
|
|
|
|
u.buf[nread - 1] = '\0';
|
|
result = tzparse(&u.buf[1], &ts, FALSE);
|
|
if (result == 0 && ts.typecnt == 2 &&
|
|
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS)
|
|
{
|
|
for (i = 0; i < 2; ++i)
|
|
ts.ttis[i].tt_abbrind +=
|
|
sp->charcnt;
|
|
for (i = 0; i < ts.charcnt; ++i)
|
|
sp->chars[sp->charcnt++] =
|
|
ts.chars[i];
|
|
i = 0;
|
|
while (i < ts.timecnt &&
|
|
ts.ats[i] <=
|
|
sp->ats[sp->timecnt - 1])
|
|
++i;
|
|
while (i < ts.timecnt &&
|
|
sp->timecnt < TZ_MAX_TIMES)
|
|
{
|
|
sp->ats[sp->timecnt] =
|
|
ts.ats[i];
|
|
sp->types[sp->timecnt] =
|
|
sp->typecnt +
|
|
ts.types[i];
|
|
++sp->timecnt;
|
|
++i;
|
|
}
|
|
sp->ttis[sp->typecnt++] = ts.ttis[0];
|
|
sp->ttis[sp->typecnt++] = ts.ttis[1];
|
|
}
|
|
}
|
|
if (sp->timecnt > 1)
|
|
{
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
|
|
differ_by_repeat(sp->ats[i], sp->ats[0]))
|
|
{
|
|
sp->goback = TRUE;
|
|
break;
|
|
}
|
|
for (i = sp->timecnt - 2; i >= 0; --i)
|
|
if (typesequiv(sp, sp->types[sp->timecnt - 1],
|
|
sp->types[i]) &&
|
|
differ_by_repeat(sp->ats[sp->timecnt - 1],
|
|
sp->ats[i]))
|
|
{
|
|
sp->goahead = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
typesequiv(const struct state * sp, int a, int b)
|
|
{
|
|
int result;
|
|
|
|
if (sp == NULL ||
|
|
a < 0 || a >= sp->typecnt ||
|
|
b < 0 || b >= sp->typecnt)
|
|
result = FALSE;
|
|
else
|
|
{
|
|
const struct ttinfo *ap = &sp->ttis[a];
|
|
const struct ttinfo *bp = &sp->ttis[b];
|
|
|
|
result = ap->tt_gmtoff == bp->tt_gmtoff &&
|
|
ap->tt_isdst == bp->tt_isdst &&
|
|
ap->tt_ttisstd == bp->tt_ttisstd &&
|
|
ap->tt_ttisgmt == bp->tt_ttisgmt &&
|
|
strcmp(&sp->chars[ap->tt_abbrind],
|
|
&sp->chars[bp->tt_abbrind]) == 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, scan until a character that is not
|
|
* a valid character in a zone name is found. Return a pointer to that
|
|
* character.
|
|
*/
|
|
static const char *
|
|
getzname(const char *strp)
|
|
{
|
|
char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into an extended time zone string, scan until the ending
|
|
* delimiter of the zone name is located. Return a pointer to the delimiter.
|
|
*
|
|
* As with getzname above, the legal character set is actually quite
|
|
* restricted, with other characters producing undefined results.
|
|
* We don't do any checking here; checking is done later in common-case code.
|
|
*/
|
|
static const char *
|
|
getqzname(const char *strp, int delim)
|
|
{
|
|
int c;
|
|
|
|
while ((c = *strp) != '\0' && c != delim)
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a number from that string.
|
|
* Check that the number is within a specified range; if it is not, return
|
|
* NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
static const char *
|
|
getnum(const char *strp, int *nump, int min, int max)
|
|
{
|
|
char c;
|
|
int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
return NULL;
|
|
num = 0;
|
|
do
|
|
{
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
return NULL; /* illegal value */
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min)
|
|
return NULL; /* illegal value */
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a number of seconds,
|
|
* in hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number
|
|
* of seconds.
|
|
*/
|
|
static const char *
|
|
getsecs(const char *strp, long *secsp)
|
|
{
|
|
int num;
|
|
|
|
/*
|
|
* `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
* "M10.4.6/26", which does not conform to Posix, but which specifies the
|
|
* equivalent of ``02:00 on the first Sunday on or after 23 Oct''.
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * (long) SECSPERHOUR;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
/* `SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract an offset, in
|
|
* [+-]hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
static const char *
|
|
getoffset(const char *strp, long *offsetp)
|
|
{
|
|
int neg = 0;
|
|
|
|
if (*strp == '-')
|
|
{
|
|
neg = 1;
|
|
++strp;
|
|
}
|
|
else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a rule in the form
|
|
* date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
* If a valid rule is not found, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
static const char *
|
|
getrule(const char *strp, struct rule * rulep)
|
|
{
|
|
if (*strp == 'J')
|
|
{
|
|
/*
|
|
* Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
}
|
|
else if (*strp == 'M')
|
|
{
|
|
/*
|
|
* Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
}
|
|
else if (is_digit(*strp))
|
|
{
|
|
/*
|
|
* Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
}
|
|
else
|
|
return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/')
|
|
{
|
|
/*
|
|
* Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getsecs(strp, &rulep->r_time);
|
|
}
|
|
else
|
|
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
|
|
* year, a rule, and the offset from UTC at the time that rule takes effect,
|
|
* calculate the Epoch-relative time that rule takes effect.
|
|
*/
|
|
static pg_time_t
|
|
transtime(pg_time_t janfirst, int year,
|
|
const struct rule * rulep, long offset)
|
|
{
|
|
int leapyear;
|
|
pg_time_t value = 0;
|
|
int i,
|
|
d,
|
|
m1,
|
|
yy0,
|
|
yy1,
|
|
yy2,
|
|
dow;
|
|
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type)
|
|
{
|
|
|
|
case JULIAN_DAY:
|
|
|
|
/*
|
|
* Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
* years. In non-leap years, or if the day number is 59 or less,
|
|
* just add SECSPERDAY times the day number-1 to the time of
|
|
* January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
|
|
/*
|
|
* n - day of year. Just add SECSPERDAY times the day number to
|
|
* the time of January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
|
|
/*
|
|
* Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
value = janfirst;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
|
|
/*
|
|
* Use Zeller's Congruence to get day-of-week of first day of
|
|
* month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
* "dow" is the day-of-week of the first day of the month. Get the
|
|
* day-of-month (zero-origin) of the first "dow" day of the month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i)
|
|
{
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
* "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value += d * SECSPERDAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* "value" is the Epoch-relative time of 00:00:00 UTC on the day in
|
|
* question. To get the Epoch-relative time of the specified local time
|
|
* on that day, add the transition time and the current offset from UTC.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
* Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
* appropriate.
|
|
*/
|
|
|
|
int
|
|
tzparse(const char *name, struct state * sp, int lastditch)
|
|
{
|
|
const char *stdname;
|
|
const char *dstname = NULL;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
long stdoffset;
|
|
long dstoffset;
|
|
pg_time_t *atp;
|
|
unsigned char *typep;
|
|
char *cp;
|
|
int load_result;
|
|
|
|
stdname = name;
|
|
if (lastditch)
|
|
{
|
|
stdlen = strlen(name); /* length of standard zone name */
|
|
name += stdlen;
|
|
if (stdlen >= sizeof sp->chars)
|
|
stdlen = (sizeof sp->chars) - 1;
|
|
stdoffset = 0;
|
|
|
|
/*
|
|
* Unlike the original zic library, do NOT invoke tzload() here; we
|
|
* can't assume pg_open_tzfile() is sane yet, and we don't care about
|
|
* leap seconds anyway.
|
|
*/
|
|
load_result = -1;
|
|
}
|
|
else
|
|
{
|
|
if (*name == '<')
|
|
{
|
|
name++;
|
|
stdname = name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return (-1);
|
|
stdlen = name - stdname;
|
|
name++;
|
|
}
|
|
else
|
|
{
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
}
|
|
if (*name == '\0')
|
|
return -1;
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
load_result = tzload(TZDEFRULES, NULL, sp, FALSE);
|
|
}
|
|
if (load_result != 0)
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
if (*name != '\0')
|
|
{
|
|
if (*name == '<')
|
|
{
|
|
dstname = ++name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return -1;
|
|
dstlen = name - dstname;
|
|
name++;
|
|
}
|
|
else
|
|
{
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
}
|
|
if (*name != '\0' && *name != ',' && *name != ';')
|
|
{
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
else
|
|
dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == '\0' && load_result != 0)
|
|
name = TZDEFRULESTRING;
|
|
if (*name == ',' || *name == ';')
|
|
{
|
|
struct rule start;
|
|
struct rule end;
|
|
int year;
|
|
pg_time_t janfirst;
|
|
pg_time_t starttime;
|
|
pg_time_t endtime;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return -1;
|
|
if (*name++ != ',')
|
|
return -1;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return -1;
|
|
if (*name != '\0')
|
|
return -1;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
|
|
/*
|
|
* Two transitions per year, from EPOCH_YEAR forward.
|
|
*/
|
|
sp->ttis[0].tt_gmtoff = -dstoffset;
|
|
sp->ttis[0].tt_isdst = 1;
|
|
sp->ttis[0].tt_abbrind = stdlen + 1;
|
|
sp->ttis[1].tt_gmtoff = -stdoffset;
|
|
sp->ttis[1].tt_isdst = 0;
|
|
sp->ttis[1].tt_abbrind = 0;
|
|
atp = sp->ats;
|
|
typep = sp->types;
|
|
janfirst = 0;
|
|
sp->timecnt = 0;
|
|
for (year = EPOCH_YEAR;
|
|
sp->timecnt + 2 <= TZ_MAX_TIMES;
|
|
++year)
|
|
{
|
|
pg_time_t newfirst;
|
|
|
|
starttime = transtime(janfirst, year, &start,
|
|
stdoffset);
|
|
endtime = transtime(janfirst, year, &end,
|
|
dstoffset);
|
|
if (starttime > endtime)
|
|
{
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
}
|
|
else
|
|
{
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
}
|
|
sp->timecnt += 2;
|
|
newfirst = janfirst;
|
|
newfirst += year_lengths[isleap(year)] *
|
|
SECSPERDAY;
|
|
if (newfirst <= janfirst)
|
|
break;
|
|
janfirst = newfirst;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
long theirstdoffset;
|
|
long theirdstoffset;
|
|
long theiroffset;
|
|
int isdst;
|
|
int i;
|
|
int j;
|
|
|
|
if (*name != '\0')
|
|
return -1;
|
|
|
|
/*
|
|
* Initial values of theirstdoffset and theirdstoffset.
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst)
|
|
{
|
|
theirstdoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst)
|
|
{
|
|
theirdstoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = FALSE;
|
|
theiroffset = theirstdoffset;
|
|
|
|
/*
|
|
* Now juggle transition times and types tracking offsets as you
|
|
* do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt)
|
|
{
|
|
/* No adjustment to transition time */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If summer time is in effect, and the transition time
|
|
* was not specified as standard time, add the summer time
|
|
* offset to the transition time; otherwise, add the
|
|
* standard time offset to the transition time.
|
|
*/
|
|
|
|
/*
|
|
* Transitions from DST to DDST will effectively disappear
|
|
* since POSIX provides for only one DST offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd)
|
|
{
|
|
sp->ats[i] += dstoffset -
|
|
theirdstoffset;
|
|
}
|
|
else
|
|
{
|
|
sp->ats[i] += stdoffset -
|
|
theirstdoffset;
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
theirdstoffset = theiroffset;
|
|
else
|
|
theirstdoffset = theiroffset;
|
|
}
|
|
|
|
/*
|
|
* Finally, fill in ttis. ttisstd and ttisgmt need not be handled.
|
|
*/
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = FALSE;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
sp->ttis[1].tt_gmtoff = -dstoffset;
|
|
sp->ttis[1].tt_isdst = TRUE;
|
|
sp->ttis[1].tt_abbrind = stdlen + 1;
|
|
sp->typecnt = 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = 0;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
}
|
|
sp->charcnt = stdlen + 1;
|
|
if (dstlen != 0)
|
|
sp->charcnt += dstlen + 1;
|
|
if ((size_t) sp->charcnt > sizeof sp->chars)
|
|
return -1;
|
|
cp = sp->chars;
|
|
(void) strncpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0)
|
|
{
|
|
(void) strncpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gmtload(struct state * sp)
|
|
{
|
|
if (tzload(gmt, NULL, sp, TRUE) != 0)
|
|
(void) tzparse(gmt, sp, TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
* The easy way to behave "as if no library function calls" localtime
|
|
* is to not call it--so we drop its guts into "localsub", which can be
|
|
* freely called. (And no, the PANS doesn't require the above behavior--
|
|
* but it *is* desirable.)
|
|
*
|
|
* The unused offset argument is for the benefit of mktime variants.
|
|
*/
|
|
static struct pg_tm *
|
|
localsub(const pg_time_t *timep, long offset,
|
|
struct pg_tm * tmp, const pg_tz *tz)
|
|
{
|
|
const struct state *sp;
|
|
const struct ttinfo *ttisp;
|
|
int i;
|
|
struct pg_tm *result;
|
|
const pg_time_t t = *timep;
|
|
|
|
sp = &tz->state;
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
|
|
{
|
|
pg_time_t newt = t;
|
|
pg_time_t seconds;
|
|
pg_time_t tcycles;
|
|
int64 icycles;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else
|
|
seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
|
|
++tcycles;
|
|
icycles = tcycles;
|
|
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
|
|
return NULL;
|
|
seconds = icycles;
|
|
seconds *= YEARSPERREPEAT;
|
|
seconds *= AVGSECSPERYEAR;
|
|
if (t < sp->ats[0])
|
|
newt += seconds;
|
|
else
|
|
newt -= seconds;
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1])
|
|
return NULL; /* "cannot happen" */
|
|
result = localsub(&newt, offset, tmp, tz);
|
|
if (result == tmp)
|
|
{
|
|
pg_time_t newy;
|
|
|
|
newy = tmp->tm_year;
|
|
if (t < sp->ats[0])
|
|
newy -= icycles * YEARSPERREPEAT;
|
|
else
|
|
newy += icycles * YEARSPERREPEAT;
|
|
tmp->tm_year = newy;
|
|
if (tmp->tm_year != newy)
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
if (sp->timecnt == 0 || t < sp->ats[0])
|
|
{
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int lo = 1;
|
|
int hi = sp->timecnt;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
i = (int) sp->types[lo - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
|
|
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
tmp->tm_isdst = ttisp->tt_isdst;
|
|
tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
|
|
return result;
|
|
}
|
|
|
|
|
|
struct pg_tm *
|
|
pg_localtime(const pg_time_t *timep, const pg_tz *tz)
|
|
{
|
|
return localsub(timep, 0L, &tm, tz);
|
|
}
|
|
|
|
|
|
/*
|
|
* gmtsub is to gmtime as localsub is to localtime.
|
|
*/
|
|
static struct pg_tm *
|
|
gmtsub(const pg_time_t *timep, long offset, struct pg_tm * tmp)
|
|
{
|
|
struct pg_tm *result;
|
|
|
|
if (!gmt_is_set)
|
|
{
|
|
gmt_is_set = TRUE;
|
|
gmtload(gmtptr);
|
|
}
|
|
result = timesub(timep, offset, gmtptr, tmp);
|
|
|
|
/*
|
|
* Could get fancy here and deliver something such as "UTC+xxxx" or
|
|
* "UTC-xxxx" if offset is non-zero, but this is no time for a treasure
|
|
* hunt.
|
|
*/
|
|
if (offset != 0)
|
|
tmp->tm_zone = wildabbr;
|
|
else
|
|
tmp->tm_zone = gmtptr->chars;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct pg_tm *
|
|
pg_gmtime(const pg_time_t *timep)
|
|
{
|
|
return gmtsub(timep, 0L, &tm);
|
|
}
|
|
|
|
/*
|
|
* Return the number of leap years through the end of the given year
|
|
* where, to make the math easy, the answer for year zero is defined as zero.
|
|
*/
|
|
static int
|
|
leaps_thru_end_of(const int y)
|
|
{
|
|
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
|
|
-(leaps_thru_end_of(-(y + 1)) + 1);
|
|
}
|
|
|
|
|
|
static struct pg_tm *
|
|
timesub(const pg_time_t *timep, long offset,
|
|
const struct state * sp, struct pg_tm * tmp)
|
|
{
|
|
const struct lsinfo *lp;
|
|
pg_time_t tdays;
|
|
int idays; /* unsigned would be so 2003 */
|
|
long rem;
|
|
int y;
|
|
const int *ip;
|
|
long corr;
|
|
int hit;
|
|
int i;
|
|
|
|
corr = 0;
|
|
hit = 0;
|
|
i = sp->leapcnt;
|
|
while (--i >= 0)
|
|
{
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans)
|
|
{
|
|
if (*timep == lp->ls_trans)
|
|
{
|
|
hit = ((i == 0 && lp->ls_corr > 0) ||
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
while (i > 0 &&
|
|
sp->lsis[i].ls_trans ==
|
|
sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr ==
|
|
sp->lsis[i - 1].ls_corr + 1)
|
|
{
|
|
++hit;
|
|
--i;
|
|
}
|
|
}
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
y = EPOCH_YEAR;
|
|
tdays = *timep / SECSPERDAY;
|
|
rem = *timep - tdays * SECSPERDAY;
|
|
while (tdays < 0 || tdays >= year_lengths[isleap(y)])
|
|
{
|
|
int newy;
|
|
pg_time_t tdelta;
|
|
int idelta;
|
|
int leapdays;
|
|
|
|
tdelta = tdays / DAYSPERLYEAR;
|
|
idelta = tdelta;
|
|
if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
|
|
return NULL;
|
|
if (idelta == 0)
|
|
idelta = (tdays < 0) ? -1 : 1;
|
|
newy = y;
|
|
if (increment_overflow(&newy, idelta))
|
|
return NULL;
|
|
leapdays = leaps_thru_end_of(newy - 1) -
|
|
leaps_thru_end_of(y - 1);
|
|
tdays -= ((pg_time_t) newy - y) * DAYSPERNYEAR;
|
|
tdays -= leapdays;
|
|
y = newy;
|
|
}
|
|
{
|
|
long seconds;
|
|
|
|
seconds = tdays * SECSPERDAY + 0.5;
|
|
tdays = seconds / SECSPERDAY;
|
|
rem += seconds - tdays * SECSPERDAY;
|
|
}
|
|
|
|
/*
|
|
* Given the range, we can now fearlessly cast...
|
|
*/
|
|
idays = tdays;
|
|
rem += offset - corr;
|
|
while (rem < 0)
|
|
{
|
|
rem += SECSPERDAY;
|
|
--idays;
|
|
}
|
|
while (rem >= SECSPERDAY)
|
|
{
|
|
rem -= SECSPERDAY;
|
|
++idays;
|
|
}
|
|
while (idays < 0)
|
|
{
|
|
if (increment_overflow(&y, -1))
|
|
return NULL;
|
|
idays += year_lengths[isleap(y)];
|
|
}
|
|
while (idays >= year_lengths[isleap(y)])
|
|
{
|
|
idays -= year_lengths[isleap(y)];
|
|
if (increment_overflow(&y, 1))
|
|
return NULL;
|
|
}
|
|
tmp->tm_year = y;
|
|
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
|
|
return NULL;
|
|
tmp->tm_yday = idays;
|
|
|
|
/*
|
|
* The "extra" mods below avoid overflow problems.
|
|
*/
|
|
tmp->tm_wday = EPOCH_WDAY +
|
|
((y - EPOCH_YEAR) % DAYSPERWEEK) *
|
|
(DAYSPERNYEAR % DAYSPERWEEK) +
|
|
leaps_thru_end_of(y - 1) -
|
|
leaps_thru_end_of(EPOCH_YEAR - 1) +
|
|
idays;
|
|
tmp->tm_wday %= DAYSPERWEEK;
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR);
|
|
rem %= SECSPERHOUR;
|
|
tmp->tm_min = (int) (rem / SECSPERMIN);
|
|
|
|
/*
|
|
* A positive leap second requires a special representation. This uses
|
|
* "... ??:59:60" et seq.
|
|
*/
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
|
|
ip = mon_lengths[isleap(y)];
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
idays -= ip[tmp->tm_mon];
|
|
tmp->tm_mday = (int) (idays + 1);
|
|
tmp->tm_isdst = 0;
|
|
tmp->tm_gmtoff = offset;
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Simplified normalize logic courtesy Paul Eggert.
|
|
*/
|
|
|
|
static int
|
|
increment_overflow(int *number, int delta)
|
|
{
|
|
int number0;
|
|
|
|
number0 = *number;
|
|
*number += delta;
|
|
return (*number < number0) != (delta < 0);
|
|
}
|
|
|
|
/*
|
|
* Find the next DST transition time at or after the given time
|
|
*
|
|
* *timep is the input value, the other parameters are output values.
|
|
*
|
|
* When the function result is 1, *boundary is set to the time_t
|
|
* representation of the next DST transition time at or after *timep,
|
|
* *before_gmtoff and *before_isdst are set to the GMT offset and isdst
|
|
* state prevailing just before that boundary, and *after_gmtoff and
|
|
* *after_isdst are set to the state prevailing just after that boundary.
|
|
*
|
|
* When the function result is 0, there is no known DST transition at or
|
|
* after *timep, but *before_gmtoff and *before_isdst indicate the GMT
|
|
* offset and isdst state prevailing at *timep. (This would occur in
|
|
* DST-less time zones, for example.)
|
|
*
|
|
* A function result of -1 indicates failure (this case does not actually
|
|
* occur in our current implementation).
|
|
*/
|
|
int
|
|
pg_next_dst_boundary(const pg_time_t *timep,
|
|
long int *before_gmtoff,
|
|
int *before_isdst,
|
|
pg_time_t *boundary,
|
|
long int *after_gmtoff,
|
|
int *after_isdst,
|
|
const pg_tz *tz)
|
|
{
|
|
const struct state *sp;
|
|
const struct ttinfo *ttisp;
|
|
int i;
|
|
int j;
|
|
const pg_time_t t = *timep;
|
|
|
|
sp = &tz->state;
|
|
if (sp->timecnt == 0)
|
|
{
|
|
/* non-DST zone, use lowest-numbered standard type */
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
return 0;
|
|
}
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
|
|
{
|
|
/* For values outside the transition table, extrapolate */
|
|
pg_time_t newt = t;
|
|
pg_time_t seconds;
|
|
pg_time_t tcycles;
|
|
int64 icycles;
|
|
int result;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else
|
|
seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
|
|
++tcycles;
|
|
icycles = tcycles;
|
|
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
|
|
return -1;
|
|
seconds = icycles;
|
|
seconds *= YEARSPERREPEAT;
|
|
seconds *= AVGSECSPERYEAR;
|
|
if (t < sp->ats[0])
|
|
newt += seconds;
|
|
else
|
|
newt -= seconds;
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1])
|
|
return -1; /* "cannot happen" */
|
|
|
|
result = pg_next_dst_boundary(&newt, before_gmtoff,
|
|
before_isdst,
|
|
boundary,
|
|
after_gmtoff,
|
|
after_isdst,
|
|
tz);
|
|
if (t < sp->ats[0])
|
|
*boundary -= seconds;
|
|
else
|
|
*boundary += seconds;
|
|
return result;
|
|
}
|
|
|
|
if (t > sp->ats[sp->timecnt - 1])
|
|
{
|
|
/* No known transition >= t, so use last known segment's type */
|
|
i = sp->types[sp->timecnt - 1];
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
return 0;
|
|
}
|
|
if (t <= sp->ats[0])
|
|
{
|
|
/* For "before", use lowest-numbered standard type */
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
*boundary = sp->ats[0];
|
|
/* And for "after", use the first segment's type */
|
|
i = sp->types[0];
|
|
ttisp = &sp->ttis[i];
|
|
*after_gmtoff = ttisp->tt_gmtoff;
|
|
*after_isdst = ttisp->tt_isdst;
|
|
return 1;
|
|
}
|
|
/* Else search to find the containing segment */
|
|
{
|
|
int lo = 1;
|
|
int hi = sp->timecnt;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
i = lo;
|
|
}
|
|
j = sp->types[i - 1];
|
|
ttisp = &sp->ttis[j];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
*boundary = sp->ats[i];
|
|
j = sp->types[i];
|
|
ttisp = &sp->ttis[j];
|
|
*after_gmtoff = ttisp->tt_gmtoff;
|
|
*after_isdst = ttisp->tt_isdst;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the given timezone uses only one GMT offset, store that offset
|
|
* into *gmtoff and return TRUE, else return FALSE.
|
|
*/
|
|
bool
|
|
pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
|
|
{
|
|
/*
|
|
* The zone could have more than one ttinfo, if it's historically used
|
|
* more than one abbreviation. We return TRUE as long as they all have
|
|
* the same gmtoff.
|
|
*/
|
|
const struct state *sp;
|
|
int i;
|
|
|
|
sp = &tz->state;
|
|
for (i = 1; i < sp->typecnt; i++)
|
|
{
|
|
if (sp->ttis[i].tt_gmtoff != sp->ttis[0].tt_gmtoff)
|
|
return false;
|
|
}
|
|
*gmtoff = sp->ttis[0].tt_gmtoff;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return the name of the current timezone
|
|
*/
|
|
const char *
|
|
pg_get_timezone_name(pg_tz *tz)
|
|
{
|
|
if (tz)
|
|
return tz->TZname;
|
|
return NULL;
|
|
}
|