mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-15 08:20:16 +08:00
ca7f8e2b86
PX_OWN_ALLOC was intended as a way to disable the use of palloc(), and
over the time new palloc() or equivalent calls have been added like in
32984d8
, making this extra layer losing its original purpose. This
simplifies on the way some code paths to use palloc0() rather than
palloc() followed by memset(0).
Author: Daniel Gustafsson
Discussion: https://postgr.es/m/A5BFAA1A-B2E8-4CBC-895E-7B1B9475A527@yesql.se
3589 lines
70 KiB
C
3589 lines
70 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* imath.c
|
|
*
|
|
* Last synchronized from https://github.com/creachadair/imath/tree/v1.29,
|
|
* using the following procedure:
|
|
*
|
|
* 1. Download imath.c and imath.h of the last synchronized version. Remove
|
|
* "#ifdef __cplusplus" blocks, which upset pgindent. Run pgindent on the
|
|
* two files. Filter the two files through "unexpand -t4 --first-only".
|
|
* Diff the result against the PostgreSQL versions. As of the last
|
|
* synchronization, changes were as follows:
|
|
*
|
|
* - replace malloc(), realloc() and free() with px_ versions
|
|
* - redirect assert() to Assert()
|
|
* - #undef MIN, #undef MAX before defining them
|
|
* - remove includes covered by c.h
|
|
* - rename DEBUG to IMATH_DEBUG
|
|
* - replace stdint.h usage with c.h equivalents
|
|
* - suppress MSVC warning 4146
|
|
* - add required PG_USED_FOR_ASSERTS_ONLY
|
|
*
|
|
* 2. Download a newer imath.c and imath.h. Transform them like in step 1.
|
|
* Apply to these files the diff you saved in step 1. Look for new lines
|
|
* requiring the same kind of change, such as new malloc() calls.
|
|
*
|
|
* 3. Configure PostgreSQL using --without-openssl. Run "make -C
|
|
* contrib/pgcrypto check".
|
|
*
|
|
* 4. Update this header comment.
|
|
*
|
|
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* contrib/pgcrypto/imath.c
|
|
*
|
|
* Upstream copyright terms follow.
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
Name: imath.c
|
|
Purpose: Arbitrary precision integer arithmetic routines.
|
|
Author: M. J. Fromberger
|
|
|
|
Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "imath.h"
|
|
#include "px.h"
|
|
|
|
#undef assert
|
|
#define assert(TEST) Assert(TEST)
|
|
|
|
const mp_result MP_OK = 0; /* no error, all is well */
|
|
const mp_result MP_FALSE = 0; /* boolean false */
|
|
const mp_result MP_TRUE = -1; /* boolean true */
|
|
const mp_result MP_MEMORY = -2; /* out of memory */
|
|
const mp_result MP_RANGE = -3; /* argument out of range */
|
|
const mp_result MP_UNDEF = -4; /* result undefined */
|
|
const mp_result MP_TRUNC = -5; /* output truncated */
|
|
const mp_result MP_BADARG = -6; /* invalid null argument */
|
|
const mp_result MP_MINERR = -6;
|
|
|
|
const mp_sign MP_NEG = 1; /* value is strictly negative */
|
|
const mp_sign MP_ZPOS = 0; /* value is non-negative */
|
|
|
|
static const char *s_unknown_err = "unknown result code";
|
|
static const char *s_error_msg[] = {"error code 0", "boolean true",
|
|
"out of memory", "argument out of range",
|
|
"result undefined", "output truncated",
|
|
"invalid argument", NULL};
|
|
|
|
/* The ith entry of this table gives the value of log_i(2).
|
|
|
|
An integer value n requires ceil(log_i(n)) digits to be represented
|
|
in base i. Since it is easy to compute lg(n), by counting bits, we
|
|
can compute log_i(n) = lg(n) * log_i(2).
|
|
|
|
The use of this table eliminates a dependency upon linkage against
|
|
the standard math libraries.
|
|
|
|
If MP_MAX_RADIX is increased, this table should be expanded too.
|
|
*/
|
|
static const double s_log2[] = {
|
|
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */
|
|
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
|
|
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
|
|
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
|
|
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
|
|
0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
|
|
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
|
|
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
|
|
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
|
|
0.193426404, /* 36 */
|
|
};
|
|
|
|
/* Return the number of digits needed to represent a static value */
|
|
#define MP_VALUE_DIGITS(V) \
|
|
((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit))
|
|
|
|
/* Round precision P to nearest word boundary */
|
|
static inline mp_size
|
|
s_round_prec(mp_size P)
|
|
{
|
|
return 2 * ((P + 1) / 2);
|
|
}
|
|
|
|
/* Set array P of S digits to zero */
|
|
static inline void
|
|
ZERO(mp_digit *P, mp_size S)
|
|
{
|
|
mp_size i__ = S * sizeof(mp_digit);
|
|
mp_digit *p__ = P;
|
|
|
|
memset(p__, 0, i__);
|
|
}
|
|
|
|
/* Copy S digits from array P to array Q */
|
|
static inline void
|
|
COPY(mp_digit *P, mp_digit *Q, mp_size S)
|
|
{
|
|
mp_size i__ = S * sizeof(mp_digit);
|
|
mp_digit *p__ = P;
|
|
mp_digit *q__ = Q;
|
|
|
|
memcpy(q__, p__, i__);
|
|
}
|
|
|
|
/* Reverse N elements of unsigned char in A. */
|
|
static inline void
|
|
REV(unsigned char *A, int N)
|
|
{
|
|
unsigned char *u_ = A;
|
|
unsigned char *v_ = u_ + N - 1;
|
|
|
|
while (u_ < v_)
|
|
{
|
|
unsigned char xch = *u_;
|
|
|
|
*u_++ = *v_;
|
|
*v_-- = xch;
|
|
}
|
|
}
|
|
|
|
/* Strip leading zeroes from z_ in-place. */
|
|
static inline void
|
|
CLAMP(mp_int z_)
|
|
{
|
|
mp_size uz_ = MP_USED(z_);
|
|
mp_digit *dz_ = MP_DIGITS(z_) + uz_ - 1;
|
|
|
|
while (uz_ > 1 && (*dz_-- == 0))
|
|
--uz_;
|
|
z_->used = uz_;
|
|
}
|
|
|
|
/* Select min/max. */
|
|
#undef MIN
|
|
#undef MAX
|
|
static inline int
|
|
MIN(int A, int B)
|
|
{
|
|
return (B < A ? B : A);
|
|
}
|
|
static inline mp_size
|
|
MAX(mp_size A, mp_size B)
|
|
{
|
|
return (B > A ? B : A);
|
|
}
|
|
|
|
/* Exchange lvalues A and B of type T, e.g.
|
|
SWAP(int, x, y) where x and y are variables of type int. */
|
|
#define SWAP(T, A, B) \
|
|
do { \
|
|
T t_ = (A); \
|
|
A = (B); \
|
|
B = t_; \
|
|
} while (0)
|
|
|
|
/* Declare a block of N temporary mpz_t values.
|
|
These values are initialized to zero.
|
|
You must add CLEANUP_TEMP() at the end of the function.
|
|
Use TEMP(i) to access a pointer to the ith value.
|
|
*/
|
|
#define DECLARE_TEMP(N) \
|
|
struct { \
|
|
mpz_t value[(N)]; \
|
|
int len; \
|
|
mp_result err; \
|
|
} temp_ = { \
|
|
.len = (N), \
|
|
.err = MP_OK, \
|
|
}; \
|
|
do { \
|
|
for (int i = 0; i < temp_.len; i++) { \
|
|
mp_int_init(TEMP(i)); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Clear all allocated temp values. */
|
|
#define CLEANUP_TEMP() \
|
|
CLEANUP: \
|
|
do { \
|
|
for (int i = 0; i < temp_.len; i++) { \
|
|
mp_int_clear(TEMP(i)); \
|
|
} \
|
|
if (temp_.err != MP_OK) { \
|
|
return temp_.err; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* A pointer to the kth temp value. */
|
|
#define TEMP(K) (temp_.value + (K))
|
|
|
|
/* Evaluate E, an expression of type mp_result expected to return MP_OK. If
|
|
the value is not MP_OK, the error is cached and control resumes at the
|
|
cleanup handler, which returns it.
|
|
*/
|
|
#define REQUIRE(E) \
|
|
do { \
|
|
temp_.err = (E); \
|
|
if (temp_.err != MP_OK) goto CLEANUP; \
|
|
} while (0)
|
|
|
|
/* Compare value to zero. */
|
|
static inline int
|
|
CMPZ(mp_int Z)
|
|
{
|
|
if (Z->used == 1 && Z->digits[0] == 0)
|
|
return 0;
|
|
return (Z->sign == MP_NEG) ? -1 : 1;
|
|
}
|
|
|
|
static inline mp_word
|
|
UPPER_HALF(mp_word W)
|
|
{
|
|
return (W >> MP_DIGIT_BIT);
|
|
}
|
|
static inline mp_digit
|
|
LOWER_HALF(mp_word W)
|
|
{
|
|
return (mp_digit) (W);
|
|
}
|
|
|
|
/* Report whether the highest-order bit of W is 1. */
|
|
static inline bool
|
|
HIGH_BIT_SET(mp_word W)
|
|
{
|
|
return (W >> (MP_WORD_BIT - 1)) != 0;
|
|
}
|
|
|
|
/* Report whether adding W + V will carry out. */
|
|
static inline bool
|
|
ADD_WILL_OVERFLOW(mp_word W, mp_word V)
|
|
{
|
|
return ((MP_WORD_MAX - V) < W);
|
|
}
|
|
|
|
/* Default number of digits allocated to a new mp_int */
|
|
static mp_size default_precision = 8;
|
|
|
|
void
|
|
mp_int_default_precision(mp_size size)
|
|
{
|
|
assert(size > 0);
|
|
default_precision = size;
|
|
}
|
|
|
|
/* Minimum number of digits to invoke recursive multiply */
|
|
static mp_size multiply_threshold = 32;
|
|
|
|
void
|
|
mp_int_multiply_threshold(mp_size thresh)
|
|
{
|
|
assert(thresh >= sizeof(mp_word));
|
|
multiply_threshold = thresh;
|
|
}
|
|
|
|
/* Allocate a buffer of (at least) num digits, or return
|
|
NULL if that couldn't be done. */
|
|
static mp_digit *s_alloc(mp_size num);
|
|
|
|
/* Release a buffer of digits allocated by s_alloc(). */
|
|
static void s_free(void *ptr);
|
|
|
|
/* Insure that z has at least min digits allocated, resizing if
|
|
necessary. Returns true if successful, false if out of memory. */
|
|
static bool s_pad(mp_int z, mp_size min);
|
|
|
|
/* Ensure Z has at least N digits allocated. */
|
|
static inline mp_result
|
|
GROW(mp_int Z, mp_size N)
|
|
{
|
|
return s_pad(Z, N) ? MP_OK : MP_MEMORY;
|
|
}
|
|
|
|
/* Fill in a "fake" mp_int on the stack with a given value */
|
|
static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
|
|
static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
|
|
|
|
/* Compare two runs of digits of given length, returns <0, 0, >0 */
|
|
static int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
|
|
|
|
/* Pack the unsigned digits of v into array t */
|
|
static int s_uvpack(mp_usmall v, mp_digit t[]);
|
|
|
|
/* Compare magnitudes of a and b, returns <0, 0, >0 */
|
|
static int s_ucmp(mp_int a, mp_int b);
|
|
|
|
/* Compare magnitudes of a and v, returns <0, 0, >0 */
|
|
static int s_vcmp(mp_int a, mp_small v);
|
|
static int s_uvcmp(mp_int a, mp_usmall uv);
|
|
|
|
/* Unsigned magnitude addition; assumes dc is big enough.
|
|
Carry out is returned (no memory allocated). */
|
|
static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b);
|
|
|
|
/* Unsigned magnitude subtraction. Assumes dc is big enough. */
|
|
static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b);
|
|
|
|
/* Unsigned recursive multiplication. Assumes dc is big enough. */
|
|
static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b);
|
|
|
|
/* Unsigned magnitude multiplication. Assumes dc is big enough. */
|
|
static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b);
|
|
|
|
/* Unsigned recursive squaring. Assumes dc is big enough. */
|
|
static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
|
|
|
|
/* Unsigned magnitude squaring. Assumes dc is big enough. */
|
|
static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
|
|
|
|
/* Single digit addition. Assumes a is big enough. */
|
|
static void s_dadd(mp_int a, mp_digit b);
|
|
|
|
/* Single digit multiplication. Assumes a is big enough. */
|
|
static void s_dmul(mp_int a, mp_digit b);
|
|
|
|
/* Single digit multiplication on buffers; assumes dc is big enough. */
|
|
static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a);
|
|
|
|
/* Single digit division. Replaces a with the quotient,
|
|
returns the remainder. */
|
|
static mp_digit s_ddiv(mp_int a, mp_digit b);
|
|
|
|
/* Quick division by a power of 2, replaces z (no allocation) */
|
|
static void s_qdiv(mp_int z, mp_size p2);
|
|
|
|
/* Quick remainder by a power of 2, replaces z (no allocation) */
|
|
static void s_qmod(mp_int z, mp_size p2);
|
|
|
|
/* Quick multiplication by a power of 2, replaces z.
|
|
Allocates if necessary; returns false in case this fails. */
|
|
static int s_qmul(mp_int z, mp_size p2);
|
|
|
|
/* Quick subtraction from a power of 2, replaces z.
|
|
Allocates if necessary; returns false in case this fails. */
|
|
static int s_qsub(mp_int z, mp_size p2);
|
|
|
|
/* Return maximum k such that 2^k divides z. */
|
|
static int s_dp2k(mp_int z);
|
|
|
|
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
|
|
static int s_isp2(mp_int z);
|
|
|
|
/* Set z to 2^k. May allocate; returns false in case this fails. */
|
|
static int s_2expt(mp_int z, mp_small k);
|
|
|
|
/* Normalize a and b for division, returns normalization constant */
|
|
static int s_norm(mp_int a, mp_int b);
|
|
|
|
/* Compute constant mu for Barrett reduction, given modulus m, result
|
|
replaces z, m is untouched. */
|
|
static mp_result s_brmu(mp_int z, mp_int m);
|
|
|
|
/* Reduce a modulo m, using Barrett's algorithm. */
|
|
static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
|
|
|
|
/* Modular exponentiation, using Barrett reduction */
|
|
static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
|
|
|
|
/* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries;
|
|
overwrites a with quotient, b with remainder. */
|
|
static mp_result s_udiv_knuth(mp_int a, mp_int b);
|
|
|
|
/* Compute the number of digits in radix r required to represent the given
|
|
value. Does not account for sign flags, terminators, etc. */
|
|
static int s_outlen(mp_int z, mp_size r);
|
|
|
|
/* Guess how many digits of precision will be needed to represent a radix r
|
|
value of the specified number of digits. Returns a value guaranteed to be
|
|
no smaller than the actual number required. */
|
|
static mp_size s_inlen(int len, mp_size r);
|
|
|
|
/* Convert a character to a digit value in radix r, or
|
|
-1 if out of range */
|
|
static int s_ch2val(char c, int r);
|
|
|
|
/* Convert a digit value to a character */
|
|
static char s_val2ch(int v, int caps);
|
|
|
|
/* Take 2's complement of a buffer in place */
|
|
static void s_2comp(unsigned char *buf, int len);
|
|
|
|
/* Convert a value to binary, ignoring sign. On input, *limpos is the bound on
|
|
how many bytes should be written to buf; on output, *limpos is set to the
|
|
number of bytes actually written. */
|
|
static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
|
|
|
|
/* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage
|
|
preallocated to hold the result. */
|
|
static inline void
|
|
UMUL(mp_int X, mp_int Y, mp_int Z)
|
|
{
|
|
mp_size ua_ = MP_USED(X);
|
|
mp_size ub_ = MP_USED(Y);
|
|
mp_size o_ = ua_ + ub_;
|
|
|
|
ZERO(MP_DIGITS(Z), o_);
|
|
(void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_);
|
|
Z->used = o_;
|
|
CLAMP(Z);
|
|
}
|
|
|
|
/* Square X into Z. Requires that Z have enough storage to hold the result. */
|
|
static inline void
|
|
USQR(mp_int X, mp_int Z)
|
|
{
|
|
mp_size ua_ = MP_USED(X);
|
|
mp_size o_ = ua_ + ua_;
|
|
|
|
ZERO(MP_DIGITS(Z), o_);
|
|
(void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_);
|
|
Z->used = o_;
|
|
CLAMP(Z);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_init(mp_int z)
|
|
{
|
|
if (z == NULL)
|
|
return MP_BADARG;
|
|
|
|
z->single = 0;
|
|
z->digits = &(z->single);
|
|
z->alloc = 1;
|
|
z->used = 1;
|
|
z->sign = MP_ZPOS;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_int
|
|
mp_int_alloc(void)
|
|
{
|
|
mp_int out = palloc(sizeof(mpz_t));
|
|
|
|
if (out != NULL)
|
|
mp_int_init(out);
|
|
|
|
return out;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_init_size(mp_int z, mp_size prec)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
if (prec == 0)
|
|
{
|
|
prec = default_precision;
|
|
}
|
|
else if (prec == 1)
|
|
{
|
|
return mp_int_init(z);
|
|
}
|
|
else
|
|
{
|
|
prec = s_round_prec(prec);
|
|
}
|
|
|
|
z->digits = s_alloc(prec);
|
|
if (MP_DIGITS(z) == NULL)
|
|
return MP_MEMORY;
|
|
|
|
z->digits[0] = 0;
|
|
z->used = 1;
|
|
z->alloc = prec;
|
|
z->sign = MP_ZPOS;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_init_copy(mp_int z, mp_int old)
|
|
{
|
|
assert(z != NULL && old != NULL);
|
|
|
|
mp_size uold = MP_USED(old);
|
|
|
|
if (uold == 1)
|
|
{
|
|
mp_int_init(z);
|
|
}
|
|
else
|
|
{
|
|
mp_size target = MAX(uold, default_precision);
|
|
mp_result res = mp_int_init_size(z, target);
|
|
|
|
if (res != MP_OK)
|
|
return res;
|
|
}
|
|
|
|
z->used = uold;
|
|
z->sign = old->sign;
|
|
COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_init_value(mp_int z, mp_small value)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
return mp_int_init_copy(z, &vtmp);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_init_uvalue(mp_int z, mp_usmall uvalue)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
|
|
|
|
s_ufake(&vtmp, uvalue, vbuf);
|
|
return mp_int_init_copy(z, &vtmp);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_set_value(mp_int z, mp_small value)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
return mp_int_copy(&vtmp, z);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_set_uvalue(mp_int z, mp_usmall uvalue)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
|
|
|
|
s_ufake(&vtmp, uvalue, vbuf);
|
|
return mp_int_copy(&vtmp, z);
|
|
}
|
|
|
|
void
|
|
mp_int_clear(mp_int z)
|
|
{
|
|
if (z == NULL)
|
|
return;
|
|
|
|
if (MP_DIGITS(z) != NULL)
|
|
{
|
|
if (MP_DIGITS(z) != &(z->single))
|
|
s_free(MP_DIGITS(z));
|
|
|
|
z->digits = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
mp_int_free(mp_int z)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
mp_int_clear(z);
|
|
pfree(z); /* note: NOT s_free() */
|
|
}
|
|
|
|
mp_result
|
|
mp_int_copy(mp_int a, mp_int c)
|
|
{
|
|
assert(a != NULL && c != NULL);
|
|
|
|
if (a != c)
|
|
{
|
|
mp_size ua = MP_USED(a);
|
|
mp_digit *da,
|
|
*dc;
|
|
|
|
if (!s_pad(c, ua))
|
|
return MP_MEMORY;
|
|
|
|
da = MP_DIGITS(a);
|
|
dc = MP_DIGITS(c);
|
|
COPY(da, dc, ua);
|
|
|
|
c->used = ua;
|
|
c->sign = a->sign;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
void
|
|
mp_int_swap(mp_int a, mp_int c)
|
|
{
|
|
if (a != c)
|
|
{
|
|
mpz_t tmp = *a;
|
|
|
|
*a = *c;
|
|
*c = tmp;
|
|
|
|
if (MP_DIGITS(a) == &(c->single))
|
|
a->digits = &(a->single);
|
|
if (MP_DIGITS(c) == &(a->single))
|
|
c->digits = &(c->single);
|
|
}
|
|
}
|
|
|
|
void
|
|
mp_int_zero(mp_int z)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
z->digits[0] = 0;
|
|
z->used = 1;
|
|
z->sign = MP_ZPOS;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_abs(mp_int a, mp_int c)
|
|
{
|
|
assert(a != NULL && c != NULL);
|
|
|
|
mp_result res;
|
|
|
|
if ((res = mp_int_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
c->sign = MP_ZPOS;
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_neg(mp_int a, mp_int c)
|
|
{
|
|
assert(a != NULL && c != NULL);
|
|
|
|
mp_result res;
|
|
|
|
if ((res = mp_int_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
if (CMPZ(c) != 0)
|
|
c->sign = 1 - MP_SIGN(a);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_add(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
|
|
mp_size ua = MP_USED(a);
|
|
mp_size ub = MP_USED(b);
|
|
mp_size max = MAX(ua, ub);
|
|
|
|
if (MP_SIGN(a) == MP_SIGN(b))
|
|
{
|
|
/* Same sign -- add magnitudes, preserve sign of addends */
|
|
if (!s_pad(c, max))
|
|
return MP_MEMORY;
|
|
|
|
mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
|
|
mp_size uc = max;
|
|
|
|
if (carry)
|
|
{
|
|
if (!s_pad(c, max + 1))
|
|
return MP_MEMORY;
|
|
|
|
c->digits[max] = carry;
|
|
++uc;
|
|
}
|
|
|
|
c->used = uc;
|
|
c->sign = a->sign;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Different signs -- subtract magnitudes, preserve sign of greater */
|
|
int cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
|
|
|
|
/*
|
|
* Set x to max(a, b), y to min(a, b) to simplify later code. A
|
|
* special case yields zero for equal magnitudes.
|
|
*/
|
|
mp_int x,
|
|
y;
|
|
|
|
if (cmp == 0)
|
|
{
|
|
mp_int_zero(c);
|
|
return MP_OK;
|
|
}
|
|
else if (cmp < 0)
|
|
{
|
|
x = b;
|
|
y = a;
|
|
}
|
|
else
|
|
{
|
|
x = a;
|
|
y = b;
|
|
}
|
|
|
|
if (!s_pad(c, MP_USED(x)))
|
|
return MP_MEMORY;
|
|
|
|
/* Subtract smaller from larger */
|
|
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
|
|
c->used = x->used;
|
|
CLAMP(c);
|
|
|
|
/* Give result the sign of the larger */
|
|
c->sign = x->sign;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_add_value(mp_int a, mp_small value, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_add(a, &vtmp, c);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_sub(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
|
|
mp_size ua = MP_USED(a);
|
|
mp_size ub = MP_USED(b);
|
|
mp_size max = MAX(ua, ub);
|
|
|
|
if (MP_SIGN(a) != MP_SIGN(b))
|
|
{
|
|
/* Different signs -- add magnitudes and keep sign of a */
|
|
if (!s_pad(c, max))
|
|
return MP_MEMORY;
|
|
|
|
mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
|
|
mp_size uc = max;
|
|
|
|
if (carry)
|
|
{
|
|
if (!s_pad(c, max + 1))
|
|
return MP_MEMORY;
|
|
|
|
c->digits[max] = carry;
|
|
++uc;
|
|
}
|
|
|
|
c->used = uc;
|
|
c->sign = a->sign;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Same signs -- subtract magnitudes */
|
|
if (!s_pad(c, max))
|
|
return MP_MEMORY;
|
|
mp_int x,
|
|
y;
|
|
mp_sign osign;
|
|
|
|
int cmp = s_ucmp(a, b);
|
|
|
|
if (cmp >= 0)
|
|
{
|
|
x = a;
|
|
y = b;
|
|
osign = MP_ZPOS;
|
|
}
|
|
else
|
|
{
|
|
x = b;
|
|
y = a;
|
|
osign = MP_NEG;
|
|
}
|
|
|
|
if (MP_SIGN(a) == MP_NEG && cmp != 0)
|
|
osign = 1 - osign;
|
|
|
|
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
|
|
c->used = x->used;
|
|
CLAMP(c);
|
|
|
|
c->sign = osign;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_sub_value(mp_int a, mp_small value, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_sub(a, &vtmp, c);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_mul(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
|
|
/* If either input is zero, we can shortcut multiplication */
|
|
if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0)
|
|
{
|
|
mp_int_zero(c);
|
|
return MP_OK;
|
|
}
|
|
|
|
/* Output is positive if inputs have same sign, otherwise negative */
|
|
mp_sign osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
|
|
|
|
/*
|
|
* If the output is not identical to any of the inputs, we'll write the
|
|
* results directly; otherwise, allocate a temporary space.
|
|
*/
|
|
mp_size ua = MP_USED(a);
|
|
mp_size ub = MP_USED(b);
|
|
mp_size osize = MAX(ua, ub);
|
|
|
|
osize = 4 * ((osize + 1) / 2);
|
|
|
|
mp_digit *out;
|
|
mp_size p = 0;
|
|
|
|
if (c == a || c == b)
|
|
{
|
|
p = MAX(s_round_prec(osize), default_precision);
|
|
|
|
if ((out = s_alloc(p)) == NULL)
|
|
return MP_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
if (!s_pad(c, osize))
|
|
return MP_MEMORY;
|
|
|
|
out = MP_DIGITS(c);
|
|
}
|
|
ZERO(out, osize);
|
|
|
|
if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
|
|
return MP_MEMORY;
|
|
|
|
/*
|
|
* If we allocated a new buffer, get rid of whatever memory c was already
|
|
* using, and fix up its fields to reflect that.
|
|
*/
|
|
if (out != MP_DIGITS(c))
|
|
{
|
|
if ((void *) MP_DIGITS(c) != (void *) c)
|
|
s_free(MP_DIGITS(c));
|
|
c->digits = out;
|
|
c->alloc = p;
|
|
}
|
|
|
|
c->used = osize; /* might not be true, but we'll fix it ... */
|
|
CLAMP(c); /* ... right here */
|
|
c->sign = osign;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_mul_value(mp_int a, mp_small value, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_mul(a, &vtmp, c);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
|
|
{
|
|
assert(a != NULL && c != NULL && p2 >= 0);
|
|
|
|
mp_result res = mp_int_copy(a, c);
|
|
|
|
if (res != MP_OK)
|
|
return res;
|
|
|
|
if (s_qmul(c, (mp_size) p2))
|
|
{
|
|
return MP_OK;
|
|
}
|
|
else
|
|
{
|
|
return MP_MEMORY;
|
|
}
|
|
}
|
|
|
|
mp_result
|
|
mp_int_sqr(mp_int a, mp_int c)
|
|
{
|
|
assert(a != NULL && c != NULL);
|
|
|
|
/* Get a temporary buffer big enough to hold the result */
|
|
mp_size osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
|
|
mp_size p = 0;
|
|
mp_digit *out;
|
|
|
|
if (a == c)
|
|
{
|
|
p = s_round_prec(osize);
|
|
p = MAX(p, default_precision);
|
|
|
|
if ((out = s_alloc(p)) == NULL)
|
|
return MP_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
if (!s_pad(c, osize))
|
|
return MP_MEMORY;
|
|
|
|
out = MP_DIGITS(c);
|
|
}
|
|
ZERO(out, osize);
|
|
|
|
s_ksqr(MP_DIGITS(a), out, MP_USED(a));
|
|
|
|
/*
|
|
* Get rid of whatever memory c was already using, and fix up its fields
|
|
* to reflect the new digit array it's using
|
|
*/
|
|
if (out != MP_DIGITS(c))
|
|
{
|
|
if ((void *) MP_DIGITS(c) != (void *) c)
|
|
s_free(MP_DIGITS(c));
|
|
c->digits = out;
|
|
c->alloc = p;
|
|
}
|
|
|
|
c->used = osize; /* might not be true, but we'll fix it ... */
|
|
CLAMP(c); /* ... right here */
|
|
c->sign = MP_ZPOS;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
|
|
{
|
|
assert(a != NULL && b != NULL && q != r);
|
|
|
|
int cmp;
|
|
mp_result res = MP_OK;
|
|
mp_int qout,
|
|
rout;
|
|
mp_sign sa = MP_SIGN(a);
|
|
mp_sign sb = MP_SIGN(b);
|
|
|
|
if (CMPZ(b) == 0)
|
|
{
|
|
return MP_UNDEF;
|
|
}
|
|
else if ((cmp = s_ucmp(a, b)) < 0)
|
|
{
|
|
/*
|
|
* If |a| < |b|, no division is required: q = 0, r = a
|
|
*/
|
|
if (r && (res = mp_int_copy(a, r)) != MP_OK)
|
|
return res;
|
|
|
|
if (q)
|
|
mp_int_zero(q);
|
|
|
|
return MP_OK;
|
|
}
|
|
else if (cmp == 0)
|
|
{
|
|
/*
|
|
* If |a| = |b|, no division is required: q = 1 or -1, r = 0
|
|
*/
|
|
if (r)
|
|
mp_int_zero(r);
|
|
|
|
if (q)
|
|
{
|
|
mp_int_zero(q);
|
|
q->digits[0] = 1;
|
|
|
|
if (sa != sb)
|
|
q->sign = MP_NEG;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
/*
|
|
* When |a| > |b|, real division is required. We need someplace to store
|
|
* quotient and remainder, but q and r are allowed to be NULL or to
|
|
* overlap with the inputs.
|
|
*/
|
|
DECLARE_TEMP(2);
|
|
int lg;
|
|
|
|
if ((lg = s_isp2(b)) < 0)
|
|
{
|
|
if (q && b != q)
|
|
{
|
|
REQUIRE(mp_int_copy(a, q));
|
|
qout = q;
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_copy(a, TEMP(0)));
|
|
qout = TEMP(0);
|
|
}
|
|
|
|
if (r && a != r)
|
|
{
|
|
REQUIRE(mp_int_copy(b, r));
|
|
rout = r;
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_copy(b, TEMP(1)));
|
|
rout = TEMP(1);
|
|
}
|
|
|
|
REQUIRE(s_udiv_knuth(qout, rout));
|
|
}
|
|
else
|
|
{
|
|
if (q)
|
|
REQUIRE(mp_int_copy(a, q));
|
|
if (r)
|
|
REQUIRE(mp_int_copy(a, r));
|
|
|
|
if (q)
|
|
s_qdiv(q, (mp_size) lg);
|
|
qout = q;
|
|
if (r)
|
|
s_qmod(r, (mp_size) lg);
|
|
rout = r;
|
|
}
|
|
|
|
/* Recompute signs for output */
|
|
if (rout)
|
|
{
|
|
rout->sign = sa;
|
|
if (CMPZ(rout) == 0)
|
|
rout->sign = MP_ZPOS;
|
|
}
|
|
if (qout)
|
|
{
|
|
qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG;
|
|
if (CMPZ(qout) == 0)
|
|
qout->sign = MP_ZPOS;
|
|
}
|
|
|
|
if (q)
|
|
REQUIRE(mp_int_copy(qout, q));
|
|
if (r)
|
|
REQUIRE(mp_int_copy(rout, r));
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_mod(mp_int a, mp_int m, mp_int c)
|
|
{
|
|
DECLARE_TEMP(1);
|
|
mp_int out = (m == c) ? TEMP(0) : c;
|
|
|
|
REQUIRE(mp_int_div(a, m, NULL, out));
|
|
if (CMPZ(out) < 0)
|
|
{
|
|
REQUIRE(mp_int_add(out, m, c));
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_copy(out, c));
|
|
}
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
DECLARE_TEMP(1);
|
|
REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0)));
|
|
|
|
if (r)
|
|
(void) mp_int_to_int(TEMP(0), r); /* can't fail */
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
|
|
{
|
|
assert(a != NULL && p2 >= 0 && q != r);
|
|
|
|
mp_result res = MP_OK;
|
|
|
|
if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
|
|
{
|
|
s_qdiv(q, (mp_size) p2);
|
|
}
|
|
|
|
if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
|
|
{
|
|
s_qmod(r, (mp_size) p2);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_expt(mp_int a, mp_small b, mp_int c)
|
|
{
|
|
assert(c != NULL);
|
|
if (b < 0)
|
|
return MP_RANGE;
|
|
|
|
DECLARE_TEMP(1);
|
|
REQUIRE(mp_int_copy(a, TEMP(0)));
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
unsigned int v = labs(b);
|
|
|
|
while (v != 0)
|
|
{
|
|
if (v & 1)
|
|
{
|
|
REQUIRE(mp_int_mul(c, TEMP(0), c));
|
|
}
|
|
|
|
v >>= 1;
|
|
if (v == 0)
|
|
break;
|
|
|
|
REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_expt_value(mp_small a, mp_small b, mp_int c)
|
|
{
|
|
assert(c != NULL);
|
|
if (b < 0)
|
|
return MP_RANGE;
|
|
|
|
DECLARE_TEMP(1);
|
|
REQUIRE(mp_int_set_value(TEMP(0), a));
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
unsigned int v = labs(b);
|
|
|
|
while (v != 0)
|
|
{
|
|
if (v & 1)
|
|
{
|
|
REQUIRE(mp_int_mul(c, TEMP(0), c));
|
|
}
|
|
|
|
v >>= 1;
|
|
if (v == 0)
|
|
break;
|
|
|
|
REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_expt_full(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
if (MP_SIGN(b) == MP_NEG)
|
|
return MP_RANGE;
|
|
|
|
DECLARE_TEMP(1);
|
|
REQUIRE(mp_int_copy(a, TEMP(0)));
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
for (unsigned ix = 0; ix < MP_USED(b); ++ix)
|
|
{
|
|
mp_digit d = b->digits[ix];
|
|
|
|
for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx)
|
|
{
|
|
if (d & 1)
|
|
{
|
|
REQUIRE(mp_int_mul(c, TEMP(0), c));
|
|
}
|
|
|
|
d >>= 1;
|
|
if (d == 0 && ix + 1 == MP_USED(b))
|
|
break;
|
|
REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
|
|
}
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
int
|
|
mp_int_compare(mp_int a, mp_int b)
|
|
{
|
|
assert(a != NULL && b != NULL);
|
|
|
|
mp_sign sa = MP_SIGN(a);
|
|
|
|
if (sa == MP_SIGN(b))
|
|
{
|
|
int cmp = s_ucmp(a, b);
|
|
|
|
/*
|
|
* If they're both zero or positive, the normal comparison applies; if
|
|
* both negative, the sense is reversed.
|
|
*/
|
|
if (sa == MP_ZPOS)
|
|
{
|
|
return cmp;
|
|
}
|
|
else
|
|
{
|
|
return -cmp;
|
|
}
|
|
}
|
|
else if (sa == MP_ZPOS)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int
|
|
mp_int_compare_unsigned(mp_int a, mp_int b)
|
|
{
|
|
assert(a != NULL && b != NULL);
|
|
|
|
return s_ucmp(a, b);
|
|
}
|
|
|
|
int
|
|
mp_int_compare_zero(mp_int z)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
if (MP_USED(z) == 1 && z->digits[0] == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (MP_SIGN(z) == MP_ZPOS)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int
|
|
mp_int_compare_value(mp_int z, mp_small value)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
|
|
|
|
if (vsign == MP_SIGN(z))
|
|
{
|
|
int cmp = s_vcmp(z, value);
|
|
|
|
return (vsign == MP_ZPOS) ? cmp : -cmp;
|
|
}
|
|
else
|
|
{
|
|
return (value < 0) ? 1 : -1;
|
|
}
|
|
}
|
|
|
|
int
|
|
mp_int_compare_uvalue(mp_int z, mp_usmall uv)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
{
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
return s_uvcmp(z, uv);
|
|
}
|
|
}
|
|
|
|
mp_result
|
|
mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL && m != NULL);
|
|
|
|
/* Zero moduli and negative exponents are not considered. */
|
|
if (CMPZ(m) == 0)
|
|
return MP_UNDEF;
|
|
if (CMPZ(b) < 0)
|
|
return MP_RANGE;
|
|
|
|
mp_size um = MP_USED(m);
|
|
|
|
DECLARE_TEMP(3);
|
|
REQUIRE(GROW(TEMP(0), 2 * um));
|
|
REQUIRE(GROW(TEMP(1), 2 * um));
|
|
|
|
mp_int s;
|
|
|
|
if (c == b || c == m)
|
|
{
|
|
REQUIRE(GROW(TEMP(2), 2 * um));
|
|
s = TEMP(2);
|
|
}
|
|
else
|
|
{
|
|
s = c;
|
|
}
|
|
|
|
REQUIRE(mp_int_mod(a, m, TEMP(0)));
|
|
REQUIRE(s_brmu(TEMP(1), m));
|
|
REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s));
|
|
REQUIRE(mp_int_copy(s, c));
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_exptmod(a, &vtmp, m, c);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_exptmod(&vtmp, b, m, c);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu,
|
|
mp_int c)
|
|
{
|
|
assert(a && b && m && c);
|
|
|
|
/* Zero moduli and negative exponents are not considered. */
|
|
if (CMPZ(m) == 0)
|
|
return MP_UNDEF;
|
|
if (CMPZ(b) < 0)
|
|
return MP_RANGE;
|
|
|
|
DECLARE_TEMP(2);
|
|
mp_size um = MP_USED(m);
|
|
|
|
REQUIRE(GROW(TEMP(0), 2 * um));
|
|
|
|
mp_int s;
|
|
|
|
if (c == b || c == m)
|
|
{
|
|
REQUIRE(GROW(TEMP(1), 2 * um));
|
|
s = TEMP(1);
|
|
}
|
|
else
|
|
{
|
|
s = c;
|
|
}
|
|
|
|
REQUIRE(mp_int_mod(a, m, TEMP(0)));
|
|
REQUIRE(s_embar(TEMP(0), b, m, mu, s));
|
|
REQUIRE(mp_int_copy(s, c));
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_redux_const(mp_int m, mp_int c)
|
|
{
|
|
assert(m != NULL && c != NULL && m != c);
|
|
|
|
return s_brmu(c, m);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_invmod(mp_int a, mp_int m, mp_int c)
|
|
{
|
|
assert(a != NULL && m != NULL && c != NULL);
|
|
|
|
if (CMPZ(a) == 0 || CMPZ(m) <= 0)
|
|
return MP_RANGE;
|
|
|
|
DECLARE_TEMP(2);
|
|
|
|
REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL));
|
|
|
|
if (mp_int_compare_value(TEMP(0), 1) != 0)
|
|
{
|
|
REQUIRE(MP_UNDEF);
|
|
}
|
|
|
|
/* It is first necessary to constrain the value to the proper range */
|
|
REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1)));
|
|
|
|
/*
|
|
* Now, if 'a' was originally negative, the value we have is actually the
|
|
* magnitude of the negative representative; to get the positive value we
|
|
* have to subtract from the modulus. Otherwise, the value is okay as it
|
|
* stands.
|
|
*/
|
|
if (MP_SIGN(a) == MP_NEG)
|
|
{
|
|
REQUIRE(mp_int_sub(m, TEMP(1), c));
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_copy(TEMP(1), c));
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
/* Binary GCD algorithm due to Josef Stein, 1961 */
|
|
mp_result
|
|
mp_int_gcd(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
|
|
int ca = CMPZ(a);
|
|
int cb = CMPZ(b);
|
|
|
|
if (ca == 0 && cb == 0)
|
|
{
|
|
return MP_UNDEF;
|
|
}
|
|
else if (ca == 0)
|
|
{
|
|
return mp_int_abs(b, c);
|
|
}
|
|
else if (cb == 0)
|
|
{
|
|
return mp_int_abs(a, c);
|
|
}
|
|
|
|
DECLARE_TEMP(3);
|
|
REQUIRE(mp_int_copy(a, TEMP(0)));
|
|
REQUIRE(mp_int_copy(b, TEMP(1)));
|
|
|
|
TEMP(0)->sign = MP_ZPOS;
|
|
TEMP(1)->sign = MP_ZPOS;
|
|
|
|
int k = 0;
|
|
|
|
{ /* Divide out common factors of 2 from u and v */
|
|
int div2_u = s_dp2k(TEMP(0));
|
|
int div2_v = s_dp2k(TEMP(1));
|
|
|
|
k = MIN(div2_u, div2_v);
|
|
s_qdiv(TEMP(0), (mp_size) k);
|
|
s_qdiv(TEMP(1), (mp_size) k);
|
|
}
|
|
|
|
if (mp_int_is_odd(TEMP(0)))
|
|
{
|
|
REQUIRE(mp_int_neg(TEMP(1), TEMP(2)));
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_copy(TEMP(0), TEMP(2)));
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
s_qdiv(TEMP(2), s_dp2k(TEMP(2)));
|
|
|
|
if (CMPZ(TEMP(2)) > 0)
|
|
{
|
|
REQUIRE(mp_int_copy(TEMP(2), TEMP(0)));
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_neg(TEMP(2), TEMP(1)));
|
|
}
|
|
|
|
REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2)));
|
|
|
|
if (CMPZ(TEMP(2)) == 0)
|
|
break;
|
|
}
|
|
|
|
REQUIRE(mp_int_abs(TEMP(0), c));
|
|
if (!s_qmul(c, (mp_size) k))
|
|
REQUIRE(MP_MEMORY);
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
/* This is the binary GCD algorithm again, but this time we keep track of the
|
|
elementary matrix operations as we go, so we can get values x and y
|
|
satisfying c = ax + by.
|
|
*/
|
|
mp_result
|
|
mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL));
|
|
|
|
mp_result res = MP_OK;
|
|
int ca = CMPZ(a);
|
|
int cb = CMPZ(b);
|
|
|
|
if (ca == 0 && cb == 0)
|
|
{
|
|
return MP_UNDEF;
|
|
}
|
|
else if (ca == 0)
|
|
{
|
|
if ((res = mp_int_abs(b, c)) != MP_OK)
|
|
return res;
|
|
mp_int_zero(x);
|
|
(void) mp_int_set_value(y, 1);
|
|
return MP_OK;
|
|
}
|
|
else if (cb == 0)
|
|
{
|
|
if ((res = mp_int_abs(a, c)) != MP_OK)
|
|
return res;
|
|
(void) mp_int_set_value(x, 1);
|
|
mp_int_zero(y);
|
|
return MP_OK;
|
|
}
|
|
|
|
/*
|
|
* Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7
|
|
*/
|
|
DECLARE_TEMP(8);
|
|
REQUIRE(mp_int_set_value(TEMP(0), 1));
|
|
REQUIRE(mp_int_set_value(TEMP(3), 1));
|
|
REQUIRE(mp_int_copy(a, TEMP(4)));
|
|
REQUIRE(mp_int_copy(b, TEMP(5)));
|
|
|
|
/* We will work with absolute values here */
|
|
TEMP(4)->sign = MP_ZPOS;
|
|
TEMP(5)->sign = MP_ZPOS;
|
|
|
|
int k = 0;
|
|
|
|
{ /* Divide out common factors of 2 from u and v */
|
|
int div2_u = s_dp2k(TEMP(4)),
|
|
div2_v = s_dp2k(TEMP(5));
|
|
|
|
k = MIN(div2_u, div2_v);
|
|
s_qdiv(TEMP(4), k);
|
|
s_qdiv(TEMP(5), k);
|
|
}
|
|
|
|
REQUIRE(mp_int_copy(TEMP(4), TEMP(6)));
|
|
REQUIRE(mp_int_copy(TEMP(5), TEMP(7)));
|
|
|
|
for (;;)
|
|
{
|
|
while (mp_int_is_even(TEMP(4)))
|
|
{
|
|
s_qdiv(TEMP(4), 1);
|
|
|
|
if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1)))
|
|
{
|
|
REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0)));
|
|
REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1)));
|
|
}
|
|
|
|
s_qdiv(TEMP(0), 1);
|
|
s_qdiv(TEMP(1), 1);
|
|
}
|
|
|
|
while (mp_int_is_even(TEMP(5)))
|
|
{
|
|
s_qdiv(TEMP(5), 1);
|
|
|
|
if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3)))
|
|
{
|
|
REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2)));
|
|
REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3)));
|
|
}
|
|
|
|
s_qdiv(TEMP(2), 1);
|
|
s_qdiv(TEMP(3), 1);
|
|
}
|
|
|
|
if (mp_int_compare(TEMP(4), TEMP(5)) >= 0)
|
|
{
|
|
REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4)));
|
|
REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0)));
|
|
REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1)));
|
|
}
|
|
else
|
|
{
|
|
REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5)));
|
|
REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
|
|
REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3)));
|
|
}
|
|
|
|
if (CMPZ(TEMP(4)) == 0)
|
|
{
|
|
if (x)
|
|
REQUIRE(mp_int_copy(TEMP(2), x));
|
|
if (y)
|
|
REQUIRE(mp_int_copy(TEMP(3), y));
|
|
if (c)
|
|
{
|
|
if (!s_qmul(TEMP(5), k))
|
|
{
|
|
REQUIRE(MP_MEMORY);
|
|
}
|
|
REQUIRE(mp_int_copy(TEMP(5), c));
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_lcm(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
|
|
/*
|
|
* Since a * b = gcd(a, b) * lcm(a, b), we can compute lcm(a, b) = (a /
|
|
* gcd(a, b)) * b.
|
|
*
|
|
* This formulation insures everything works even if the input variables
|
|
* share space.
|
|
*/
|
|
DECLARE_TEMP(1);
|
|
REQUIRE(mp_int_gcd(a, b, TEMP(0)));
|
|
REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL));
|
|
REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0)));
|
|
REQUIRE(mp_int_copy(TEMP(0), c));
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
bool
|
|
mp_int_divisible_value(mp_int a, mp_small v)
|
|
{
|
|
mp_small rem = 0;
|
|
|
|
if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
|
|
{
|
|
return false;
|
|
}
|
|
return rem == 0;
|
|
}
|
|
|
|
int
|
|
mp_int_is_pow2(mp_int z)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
return s_isp2(z);
|
|
}
|
|
|
|
/* Implementation of Newton's root finding method, based loosely on a patch
|
|
contributed by Hal Finkel <half@halssoftware.com>
|
|
modified by M. J. Fromberger.
|
|
*/
|
|
mp_result
|
|
mp_int_root(mp_int a, mp_small b, mp_int c)
|
|
{
|
|
assert(a != NULL && c != NULL && b > 0);
|
|
|
|
if (b == 1)
|
|
{
|
|
return mp_int_copy(a, c);
|
|
}
|
|
bool flips = false;
|
|
|
|
if (MP_SIGN(a) == MP_NEG)
|
|
{
|
|
if (b % 2 == 0)
|
|
{
|
|
return MP_UNDEF; /* root does not exist for negative a with
|
|
* even b */
|
|
}
|
|
else
|
|
{
|
|
flips = true;
|
|
}
|
|
}
|
|
|
|
DECLARE_TEMP(5);
|
|
REQUIRE(mp_int_copy(a, TEMP(0)));
|
|
REQUIRE(mp_int_copy(a, TEMP(1)));
|
|
TEMP(0)->sign = MP_ZPOS;
|
|
TEMP(1)->sign = MP_ZPOS;
|
|
|
|
for (;;)
|
|
{
|
|
REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2)));
|
|
|
|
if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
|
|
break;
|
|
|
|
REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
|
|
REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3)));
|
|
REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3)));
|
|
REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL));
|
|
REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4)));
|
|
|
|
if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0)
|
|
{
|
|
REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4)));
|
|
}
|
|
REQUIRE(mp_int_copy(TEMP(4), TEMP(1)));
|
|
}
|
|
|
|
REQUIRE(mp_int_copy(TEMP(1), c));
|
|
|
|
/* If the original value of a was negative, flip the output sign. */
|
|
if (flips)
|
|
(void) mp_int_neg(c, c); /* cannot fail */
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_to_int(mp_int z, mp_small *out)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
/* Make sure the value is representable as a small integer */
|
|
mp_sign sz = MP_SIGN(z);
|
|
|
|
if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
|
|
mp_int_compare_value(z, MP_SMALL_MIN) < 0)
|
|
{
|
|
return MP_RANGE;
|
|
}
|
|
|
|
mp_usmall uz = MP_USED(z);
|
|
mp_digit *dz = MP_DIGITS(z) + uz - 1;
|
|
mp_small uv = 0;
|
|
|
|
while (uz > 0)
|
|
{
|
|
uv <<= MP_DIGIT_BIT / 2;
|
|
uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
|
|
--uz;
|
|
}
|
|
|
|
if (out)
|
|
*out = (mp_small) ((sz == MP_NEG) ? -uv : uv);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_to_uint(mp_int z, mp_usmall *out)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
/* Make sure the value is representable as an unsigned small integer */
|
|
mp_size sz = MP_SIGN(z);
|
|
|
|
if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0)
|
|
{
|
|
return MP_RANGE;
|
|
}
|
|
|
|
mp_size uz = MP_USED(z);
|
|
mp_digit *dz = MP_DIGITS(z) + uz - 1;
|
|
mp_usmall uv = 0;
|
|
|
|
while (uz > 0)
|
|
{
|
|
uv <<= MP_DIGIT_BIT / 2;
|
|
uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
|
|
--uz;
|
|
}
|
|
|
|
if (out)
|
|
*out = uv;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_to_string(mp_int z, mp_size radix, char *str, int limit)
|
|
{
|
|
assert(z != NULL && str != NULL && limit >= 2);
|
|
assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
|
|
|
|
int cmp = 0;
|
|
|
|
if (CMPZ(z) == 0)
|
|
{
|
|
*str++ = s_val2ch(0, 1);
|
|
}
|
|
else
|
|
{
|
|
mp_result res;
|
|
mpz_t tmp;
|
|
char *h,
|
|
*t;
|
|
|
|
if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
|
|
return res;
|
|
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
{
|
|
*str++ = '-';
|
|
--limit;
|
|
}
|
|
h = str;
|
|
|
|
/* Generate digits in reverse order until finished or limit reached */
|
|
for ( /* */ ; limit > 0; --limit)
|
|
{
|
|
mp_digit d;
|
|
|
|
if ((cmp = CMPZ(&tmp)) == 0)
|
|
break;
|
|
|
|
d = s_ddiv(&tmp, (mp_digit) radix);
|
|
*str++ = s_val2ch(d, 1);
|
|
}
|
|
t = str - 1;
|
|
|
|
/* Put digits back in correct output order */
|
|
while (h < t)
|
|
{
|
|
char tc = *h;
|
|
|
|
*h++ = *t;
|
|
*t-- = tc;
|
|
}
|
|
|
|
mp_int_clear(&tmp);
|
|
}
|
|
|
|
*str = '\0';
|
|
if (cmp == 0)
|
|
{
|
|
return MP_OK;
|
|
}
|
|
else
|
|
{
|
|
return MP_TRUNC;
|
|
}
|
|
}
|
|
|
|
mp_result
|
|
mp_int_string_len(mp_int z, mp_size radix)
|
|
{
|
|
assert(z != NULL);
|
|
assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
|
|
|
|
int len = s_outlen(z, radix) + 1; /* for terminator */
|
|
|
|
/* Allow for sign marker on negatives */
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
len += 1;
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Read zero-terminated string into z */
|
|
mp_result
|
|
mp_int_read_string(mp_int z, mp_size radix, const char *str)
|
|
{
|
|
return mp_int_read_cstring(z, radix, str, NULL);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
|
|
char **end)
|
|
{
|
|
assert(z != NULL && str != NULL);
|
|
assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
|
|
|
|
/* Skip leading whitespace */
|
|
while (isspace((unsigned char) *str))
|
|
++str;
|
|
|
|
/* Handle leading sign tag (+/-, positive default) */
|
|
switch (*str)
|
|
{
|
|
case '-':
|
|
z->sign = MP_NEG;
|
|
++str;
|
|
break;
|
|
case '+':
|
|
++str; /* fallthrough */
|
|
default:
|
|
z->sign = MP_ZPOS;
|
|
break;
|
|
}
|
|
|
|
/* Skip leading zeroes */
|
|
int ch;
|
|
|
|
while ((ch = s_ch2val(*str, radix)) == 0)
|
|
++str;
|
|
|
|
/* Make sure there is enough space for the value */
|
|
if (!s_pad(z, s_inlen(strlen(str), radix)))
|
|
return MP_MEMORY;
|
|
|
|
z->used = 1;
|
|
z->digits[0] = 0;
|
|
|
|
while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0))
|
|
{
|
|
s_dmul(z, (mp_digit) radix);
|
|
s_dadd(z, (mp_digit) ch);
|
|
++str;
|
|
}
|
|
|
|
CLAMP(z);
|
|
|
|
/* Override sign for zero, even if negative specified. */
|
|
if (CMPZ(z) == 0)
|
|
z->sign = MP_ZPOS;
|
|
|
|
if (end != NULL)
|
|
*end = unconstify(char *, str);
|
|
|
|
/*
|
|
* Return a truncation error if the string has unprocessed characters
|
|
* remaining, so the caller can tell if the whole string was done
|
|
*/
|
|
if (*str != '\0')
|
|
{
|
|
return MP_TRUNC;
|
|
}
|
|
else
|
|
{
|
|
return MP_OK;
|
|
}
|
|
}
|
|
|
|
mp_result
|
|
mp_int_count_bits(mp_int z)
|
|
{
|
|
assert(z != NULL);
|
|
|
|
mp_size uz = MP_USED(z);
|
|
|
|
if (uz == 1 && z->digits[0] == 0)
|
|
return 1;
|
|
|
|
--uz;
|
|
mp_size nbits = uz * MP_DIGIT_BIT;
|
|
mp_digit d = z->digits[uz];
|
|
|
|
while (d != 0)
|
|
{
|
|
d >>= 1;
|
|
++nbits;
|
|
}
|
|
|
|
return nbits;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
|
|
{
|
|
static const int PAD_FOR_2C = 1;
|
|
|
|
assert(z != NULL && buf != NULL);
|
|
|
|
int limpos = limit;
|
|
mp_result res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
|
|
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
s_2comp(buf, limpos);
|
|
|
|
return res;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_read_binary(mp_int z, unsigned char *buf, int len)
|
|
{
|
|
assert(z != NULL && buf != NULL && len > 0);
|
|
|
|
/* Figure out how many digits are needed to represent this value */
|
|
mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
|
|
|
|
if (!s_pad(z, need))
|
|
return MP_MEMORY;
|
|
|
|
mp_int_zero(z);
|
|
|
|
/*
|
|
* If the high-order bit is set, take the 2's complement before reading
|
|
* the value (it will be restored afterward)
|
|
*/
|
|
if (buf[0] >> (CHAR_BIT - 1))
|
|
{
|
|
z->sign = MP_NEG;
|
|
s_2comp(buf, len);
|
|
}
|
|
|
|
mp_digit *dz = MP_DIGITS(z);
|
|
unsigned char *tmp = buf;
|
|
|
|
for (int i = len; i > 0; --i, ++tmp)
|
|
{
|
|
s_qmul(z, (mp_size) CHAR_BIT);
|
|
*dz |= *tmp;
|
|
}
|
|
|
|
/* Restore 2's complement if we took it before */
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
s_2comp(buf, len);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_binary_len(mp_int z)
|
|
{
|
|
mp_result res = mp_int_count_bits(z);
|
|
|
|
if (res <= 0)
|
|
return res;
|
|
|
|
int bytes = mp_int_unsigned_len(z);
|
|
|
|
/*
|
|
* If the highest-order bit falls exactly on a byte boundary, we need to
|
|
* pad with an extra byte so that the sign will be read correctly when
|
|
* reading it back in.
|
|
*/
|
|
if (bytes * CHAR_BIT == res)
|
|
++bytes;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
|
|
{
|
|
static const int NO_PADDING = 0;
|
|
|
|
assert(z != NULL && buf != NULL);
|
|
|
|
return s_tobin(z, buf, &limit, NO_PADDING);
|
|
}
|
|
|
|
mp_result
|
|
mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
|
|
{
|
|
assert(z != NULL && buf != NULL && len > 0);
|
|
|
|
/* Figure out how many digits are needed to represent this value */
|
|
mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
|
|
|
|
if (!s_pad(z, need))
|
|
return MP_MEMORY;
|
|
|
|
mp_int_zero(z);
|
|
|
|
unsigned char *tmp = buf;
|
|
|
|
for (int i = len; i > 0; --i, ++tmp)
|
|
{
|
|
(void) s_qmul(z, CHAR_BIT);
|
|
*MP_DIGITS(z) |= *tmp;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result
|
|
mp_int_unsigned_len(mp_int z)
|
|
{
|
|
mp_result res = mp_int_count_bits(z);
|
|
|
|
if (res <= 0)
|
|
return res;
|
|
|
|
int bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
const char *
|
|
mp_error_string(mp_result res)
|
|
{
|
|
if (res > 0)
|
|
return s_unknown_err;
|
|
|
|
res = -res;
|
|
int ix;
|
|
|
|
for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
|
|
;
|
|
|
|
if (s_error_msg[ix] != NULL)
|
|
{
|
|
return s_error_msg[ix];
|
|
}
|
|
else
|
|
{
|
|
return s_unknown_err;
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* Private functions for internal use. These make assumptions. */
|
|
|
|
#if IMATH_DEBUG
|
|
static const mp_digit fill = (mp_digit) 0xdeadbeefabad1dea;
|
|
#endif
|
|
|
|
static mp_digit *
|
|
s_alloc(mp_size num)
|
|
{
|
|
mp_digit *out = palloc(num * sizeof(mp_digit));
|
|
|
|
assert(out != NULL);
|
|
|
|
#if IMATH_DEBUG
|
|
for (mp_size ix = 0; ix < num; ++ix)
|
|
out[ix] = fill;
|
|
#endif
|
|
return out;
|
|
}
|
|
|
|
static mp_digit *
|
|
s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
|
|
{
|
|
#if IMATH_DEBUG
|
|
mp_digit *new = s_alloc(nsize);
|
|
|
|
assert(new != NULL);
|
|
|
|
for (mp_size ix = 0; ix < nsize; ++ix)
|
|
new[ix] = fill;
|
|
memcpy(new, old, osize * sizeof(mp_digit));
|
|
#else
|
|
mp_digit *new = repalloc(old, nsize * sizeof(mp_digit));
|
|
|
|
assert(new != NULL);
|
|
#endif
|
|
|
|
return new;
|
|
}
|
|
|
|
static void
|
|
s_free(void *ptr)
|
|
{
|
|
pfree(ptr);
|
|
}
|
|
|
|
static bool
|
|
s_pad(mp_int z, mp_size min)
|
|
{
|
|
if (MP_ALLOC(z) < min)
|
|
{
|
|
mp_size nsize = s_round_prec(min);
|
|
mp_digit *tmp;
|
|
|
|
if (z->digits == &(z->single))
|
|
{
|
|
if ((tmp = s_alloc(nsize)) == NULL)
|
|
return false;
|
|
tmp[0] = z->single;
|
|
}
|
|
else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
z->digits = tmp;
|
|
z->alloc = nsize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Note: This will not work correctly when value == MP_SMALL_MIN */
|
|
static void
|
|
s_fake(mp_int z, mp_small value, mp_digit vbuf[])
|
|
{
|
|
mp_usmall uv = (mp_usmall) (value < 0) ? -value : value;
|
|
|
|
s_ufake(z, uv, vbuf);
|
|
if (value < 0)
|
|
z->sign = MP_NEG;
|
|
}
|
|
|
|
static void
|
|
s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[])
|
|
{
|
|
mp_size ndig = (mp_size) s_uvpack(value, vbuf);
|
|
|
|
z->used = ndig;
|
|
z->alloc = MP_VALUE_DIGITS(value);
|
|
z->sign = MP_ZPOS;
|
|
z->digits = vbuf;
|
|
}
|
|
|
|
static int
|
|
s_cdig(mp_digit *da, mp_digit *db, mp_size len)
|
|
{
|
|
mp_digit *dat = da + len - 1,
|
|
*dbt = db + len - 1;
|
|
|
|
for ( /* */ ; len != 0; --len, --dat, --dbt)
|
|
{
|
|
if (*dat > *dbt)
|
|
{
|
|
return 1;
|
|
}
|
|
else if (*dat < *dbt)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
s_uvpack(mp_usmall uv, mp_digit t[])
|
|
{
|
|
int ndig = 0;
|
|
|
|
if (uv == 0)
|
|
t[ndig++] = 0;
|
|
else
|
|
{
|
|
while (uv != 0)
|
|
{
|
|
t[ndig++] = (mp_digit) uv;
|
|
uv >>= MP_DIGIT_BIT / 2;
|
|
uv >>= MP_DIGIT_BIT / 2;
|
|
}
|
|
}
|
|
|
|
return ndig;
|
|
}
|
|
|
|
static int
|
|
s_ucmp(mp_int a, mp_int b)
|
|
{
|
|
mp_size ua = MP_USED(a),
|
|
ub = MP_USED(b);
|
|
|
|
if (ua > ub)
|
|
{
|
|
return 1;
|
|
}
|
|
else if (ub > ua)
|
|
{
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
|
|
}
|
|
}
|
|
|
|
static int
|
|
s_vcmp(mp_int a, mp_small v)
|
|
{
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4146)
|
|
#endif
|
|
mp_usmall uv = (v < 0) ? -(mp_usmall) v : (mp_usmall) v;
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
return s_uvcmp(a, uv);
|
|
}
|
|
|
|
static int
|
|
s_uvcmp(mp_int a, mp_usmall uv)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vdig[MP_VALUE_DIGITS(uv)];
|
|
|
|
s_ufake(&vtmp, uv, vdig);
|
|
return s_ucmp(a, &vtmp);
|
|
}
|
|
|
|
static mp_digit
|
|
s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b)
|
|
{
|
|
mp_size pos;
|
|
mp_word w = 0;
|
|
|
|
/* Insure that da is the longer of the two to simplify later code */
|
|
if (size_b > size_a)
|
|
{
|
|
SWAP(mp_digit *, da, db);
|
|
SWAP(mp_size, size_a, size_b);
|
|
}
|
|
|
|
/* Add corresponding digits until the shorter number runs out */
|
|
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
|
|
{
|
|
w = w + (mp_word) *da + (mp_word) *db;
|
|
*dc = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
/* Propagate carries as far as necessary */
|
|
for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
|
|
{
|
|
w = w + *da;
|
|
|
|
*dc = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
/* Return carry out */
|
|
return (mp_digit) w;
|
|
}
|
|
|
|
static void
|
|
s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b)
|
|
{
|
|
mp_size pos;
|
|
mp_word w = 0;
|
|
|
|
/* We assume that |a| >= |b| so this should definitely hold */
|
|
assert(size_a >= size_b);
|
|
|
|
/* Subtract corresponding digits and propagate borrow */
|
|
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
|
|
{
|
|
w = ((mp_word) MP_DIGIT_MAX + 1 + /* MP_RADIX */
|
|
(mp_word) *da) -
|
|
w - (mp_word) *db;
|
|
|
|
*dc = LOWER_HALF(w);
|
|
w = (UPPER_HALF(w) == 0);
|
|
}
|
|
|
|
/* Finish the subtraction for remaining upper digits of da */
|
|
for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
|
|
{
|
|
w = ((mp_word) MP_DIGIT_MAX + 1 + /* MP_RADIX */
|
|
(mp_word) *da) -
|
|
w;
|
|
|
|
*dc = LOWER_HALF(w);
|
|
w = (UPPER_HALF(w) == 0);
|
|
}
|
|
|
|
/* If there is a borrow out at the end, it violates the precondition */
|
|
assert(w == 0);
|
|
}
|
|
|
|
static int
|
|
s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b)
|
|
{
|
|
mp_size bot_size;
|
|
|
|
/* Make sure b is the smaller of the two input values */
|
|
if (size_b > size_a)
|
|
{
|
|
SWAP(mp_digit *, da, db);
|
|
SWAP(mp_size, size_a, size_b);
|
|
}
|
|
|
|
/*
|
|
* Insure that the bottom is the larger half in an odd-length split; the
|
|
* code below relies on this being true.
|
|
*/
|
|
bot_size = (size_a + 1) / 2;
|
|
|
|
/*
|
|
* If the values are big enough to bother with recursion, use the
|
|
* Karatsuba algorithm to compute the product; otherwise use the normal
|
|
* multiplication algorithm
|
|
*/
|
|
if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size)
|
|
{
|
|
mp_digit *t1,
|
|
*t2,
|
|
*t3,
|
|
carry;
|
|
|
|
mp_digit *a_top = da + bot_size;
|
|
mp_digit *b_top = db + bot_size;
|
|
|
|
mp_size at_size = size_a - bot_size;
|
|
mp_size bt_size = size_b - bot_size;
|
|
mp_size buf_size = 2 * bot_size;
|
|
|
|
/*
|
|
* Do a single allocation for all three temporary buffers needed; each
|
|
* buffer must be big enough to hold the product of two bottom halves,
|
|
* and one buffer needs space for the completed product; twice the
|
|
* space is plenty.
|
|
*/
|
|
if ((t1 = s_alloc(4 * buf_size)) == NULL)
|
|
return 0;
|
|
t2 = t1 + buf_size;
|
|
t3 = t2 + buf_size;
|
|
ZERO(t1, 4 * buf_size);
|
|
|
|
/*
|
|
* t1 and t2 are initially used as temporaries to compute the inner
|
|
* product (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
|
|
*/
|
|
carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
|
|
t1[bot_size] = carry;
|
|
|
|
carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
|
|
t2[bot_size] = carry;
|
|
|
|
(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
|
|
|
|
/*
|
|
* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so
|
|
* that we're left with only the pieces we want: t3 = a1b0 + a0b1
|
|
*/
|
|
ZERO(t1, buf_size);
|
|
ZERO(t2, buf_size);
|
|
(void) s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */
|
|
(void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
|
|
|
|
/* Subtract out t1 and t2 to get the inner product */
|
|
s_usub(t3, t1, t3, buf_size + 2, buf_size);
|
|
s_usub(t3, t2, t3, buf_size + 2, buf_size);
|
|
|
|
/* Assemble the output value */
|
|
COPY(t1, dc, buf_size);
|
|
carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
|
|
assert(carry == 0);
|
|
|
|
carry =
|
|
s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
|
|
assert(carry == 0);
|
|
|
|
s_free(t1); /* note t2 and t3 are just internal pointers
|
|
* to t1 */
|
|
}
|
|
else
|
|
{
|
|
s_umul(da, db, dc, size_a, size_b);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
|
|
mp_size size_b)
|
|
{
|
|
mp_size a,
|
|
b;
|
|
mp_word w;
|
|
|
|
for (a = 0; a < size_a; ++a, ++dc, ++da)
|
|
{
|
|
mp_digit *dct = dc;
|
|
mp_digit *dbt = db;
|
|
|
|
if (*da == 0)
|
|
continue;
|
|
|
|
w = 0;
|
|
for (b = 0; b < size_b; ++b, ++dbt, ++dct)
|
|
{
|
|
w = (mp_word) *da * (mp_word) *dbt + w + (mp_word) *dct;
|
|
|
|
*dct = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
*dct = (mp_digit) w;
|
|
}
|
|
}
|
|
|
|
static int
|
|
s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
|
|
{
|
|
if (multiply_threshold && size_a > multiply_threshold)
|
|
{
|
|
mp_size bot_size = (size_a + 1) / 2;
|
|
mp_digit *a_top = da + bot_size;
|
|
mp_digit *t1,
|
|
*t2,
|
|
*t3,
|
|
carry PG_USED_FOR_ASSERTS_ONLY;
|
|
mp_size at_size = size_a - bot_size;
|
|
mp_size buf_size = 2 * bot_size;
|
|
|
|
if ((t1 = s_alloc(4 * buf_size)) == NULL)
|
|
return 0;
|
|
t2 = t1 + buf_size;
|
|
t3 = t2 + buf_size;
|
|
ZERO(t1, 4 * buf_size);
|
|
|
|
(void) s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */
|
|
(void) s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */
|
|
|
|
(void) s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */
|
|
|
|
/* Quick multiply t3 by 2, shifting left (can't overflow) */
|
|
{
|
|
int i,
|
|
top = bot_size + at_size;
|
|
mp_word w,
|
|
save = 0;
|
|
|
|
for (i = 0; i < top; ++i)
|
|
{
|
|
w = t3[i];
|
|
w = (w << 1) | save;
|
|
t3[i] = LOWER_HALF(w);
|
|
save = UPPER_HALF(w);
|
|
}
|
|
t3[i] = LOWER_HALF(save);
|
|
}
|
|
|
|
/* Assemble the output value */
|
|
COPY(t1, dc, 2 * bot_size);
|
|
carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
|
|
assert(carry == 0);
|
|
|
|
carry =
|
|
s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
|
|
assert(carry == 0);
|
|
|
|
s_free(t1); /* note that t2 and t2 are internal pointers
|
|
* only */
|
|
|
|
}
|
|
else
|
|
{
|
|
s_usqr(da, dc, size_a);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
|
|
{
|
|
mp_size i,
|
|
j;
|
|
mp_word w;
|
|
|
|
for (i = 0; i < size_a; ++i, dc += 2, ++da)
|
|
{
|
|
mp_digit *dct = dc,
|
|
*dat = da;
|
|
|
|
if (*da == 0)
|
|
continue;
|
|
|
|
/* Take care of the first digit, no rollover */
|
|
w = (mp_word) *dat * (mp_word) *dat + (mp_word) *dct;
|
|
*dct = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
++dat;
|
|
++dct;
|
|
|
|
for (j = i + 1; j < size_a; ++j, ++dat, ++dct)
|
|
{
|
|
mp_word t = (mp_word) *da * (mp_word) *dat;
|
|
mp_word u = w + (mp_word) *dct,
|
|
ov = 0;
|
|
|
|
/* Check if doubling t will overflow a word */
|
|
if (HIGH_BIT_SET(t))
|
|
ov = 1;
|
|
|
|
w = t + t;
|
|
|
|
/* Check if adding u to w will overflow a word */
|
|
if (ADD_WILL_OVERFLOW(w, u))
|
|
ov = 1;
|
|
|
|
w += u;
|
|
|
|
*dct = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
if (ov)
|
|
{
|
|
w += MP_DIGIT_MAX; /* MP_RADIX */
|
|
++w;
|
|
}
|
|
}
|
|
|
|
w = w + *dct;
|
|
*dct = (mp_digit) w;
|
|
while ((w = UPPER_HALF(w)) != 0)
|
|
{
|
|
++dct;
|
|
w = w + *dct;
|
|
*dct = LOWER_HALF(w);
|
|
}
|
|
|
|
assert(w == 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
s_dadd(mp_int a, mp_digit b)
|
|
{
|
|
mp_word w = 0;
|
|
mp_digit *da = MP_DIGITS(a);
|
|
mp_size ua = MP_USED(a);
|
|
|
|
w = (mp_word) *da + b;
|
|
*da++ = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
|
|
for (ua -= 1; ua > 0; --ua, ++da)
|
|
{
|
|
w = (mp_word) *da + w;
|
|
|
|
*da = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
if (w)
|
|
{
|
|
*da = (mp_digit) w;
|
|
a->used += 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
s_dmul(mp_int a, mp_digit b)
|
|
{
|
|
mp_word w = 0;
|
|
mp_digit *da = MP_DIGITS(a);
|
|
mp_size ua = MP_USED(a);
|
|
|
|
while (ua > 0)
|
|
{
|
|
w = (mp_word) *da * b + w;
|
|
*da++ = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
--ua;
|
|
}
|
|
|
|
if (w)
|
|
{
|
|
*da = (mp_digit) w;
|
|
a->used += 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
|
|
{
|
|
mp_word w = 0;
|
|
|
|
while (size_a > 0)
|
|
{
|
|
w = (mp_word) *da++ * (mp_word) b + w;
|
|
|
|
*dc++ = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
--size_a;
|
|
}
|
|
|
|
if (w)
|
|
*dc = LOWER_HALF(w);
|
|
}
|
|
|
|
static mp_digit
|
|
s_ddiv(mp_int a, mp_digit b)
|
|
{
|
|
mp_word w = 0,
|
|
qdigit;
|
|
mp_size ua = MP_USED(a);
|
|
mp_digit *da = MP_DIGITS(a) + ua - 1;
|
|
|
|
for ( /* */ ; ua > 0; --ua, --da)
|
|
{
|
|
w = (w << MP_DIGIT_BIT) | *da;
|
|
|
|
if (w >= b)
|
|
{
|
|
qdigit = w / b;
|
|
w = w % b;
|
|
}
|
|
else
|
|
{
|
|
qdigit = 0;
|
|
}
|
|
|
|
*da = (mp_digit) qdigit;
|
|
}
|
|
|
|
CLAMP(a);
|
|
return (mp_digit) w;
|
|
}
|
|
|
|
static void
|
|
s_qdiv(mp_int z, mp_size p2)
|
|
{
|
|
mp_size ndig = p2 / MP_DIGIT_BIT,
|
|
nbits = p2 % MP_DIGIT_BIT;
|
|
mp_size uz = MP_USED(z);
|
|
|
|
if (ndig)
|
|
{
|
|
mp_size mark;
|
|
mp_digit *to,
|
|
*from;
|
|
|
|
if (ndig >= uz)
|
|
{
|
|
mp_int_zero(z);
|
|
return;
|
|
}
|
|
|
|
to = MP_DIGITS(z);
|
|
from = to + ndig;
|
|
|
|
for (mark = ndig; mark < uz; ++mark)
|
|
{
|
|
*to++ = *from++;
|
|
}
|
|
|
|
z->used = uz - ndig;
|
|
}
|
|
|
|
if (nbits)
|
|
{
|
|
mp_digit d = 0,
|
|
*dz,
|
|
save;
|
|
mp_size up = MP_DIGIT_BIT - nbits;
|
|
|
|
uz = MP_USED(z);
|
|
dz = MP_DIGITS(z) + uz - 1;
|
|
|
|
for ( /* */ ; uz > 0; --uz, --dz)
|
|
{
|
|
save = *dz;
|
|
|
|
*dz = (*dz >> nbits) | (d << up);
|
|
d = save;
|
|
}
|
|
|
|
CLAMP(z);
|
|
}
|
|
|
|
if (MP_USED(z) == 1 && z->digits[0] == 0)
|
|
z->sign = MP_ZPOS;
|
|
}
|
|
|
|
static void
|
|
s_qmod(mp_int z, mp_size p2)
|
|
{
|
|
mp_size start = p2 / MP_DIGIT_BIT + 1,
|
|
rest = p2 % MP_DIGIT_BIT;
|
|
mp_size uz = MP_USED(z);
|
|
mp_digit mask = (1u << rest) - 1;
|
|
|
|
if (start <= uz)
|
|
{
|
|
z->used = start;
|
|
z->digits[start - 1] &= mask;
|
|
CLAMP(z);
|
|
}
|
|
}
|
|
|
|
static int
|
|
s_qmul(mp_int z, mp_size p2)
|
|
{
|
|
mp_size uz,
|
|
need,
|
|
rest,
|
|
extra,
|
|
i;
|
|
mp_digit *from,
|
|
*to,
|
|
d;
|
|
|
|
if (p2 == 0)
|
|
return 1;
|
|
|
|
uz = MP_USED(z);
|
|
need = p2 / MP_DIGIT_BIT;
|
|
rest = p2 % MP_DIGIT_BIT;
|
|
|
|
/*
|
|
* Figure out if we need an extra digit at the top end; this occurs if the
|
|
* topmost `rest' bits of the high-order digit of z are not zero, meaning
|
|
* they will be shifted off the end if not preserved
|
|
*/
|
|
extra = 0;
|
|
if (rest != 0)
|
|
{
|
|
mp_digit *dz = MP_DIGITS(z) + uz - 1;
|
|
|
|
if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
|
|
extra = 1;
|
|
}
|
|
|
|
if (!s_pad(z, uz + need + extra))
|
|
return 0;
|
|
|
|
/*
|
|
* If we need to shift by whole digits, do that in one pass, then to back
|
|
* and shift by partial digits.
|
|
*/
|
|
if (need > 0)
|
|
{
|
|
from = MP_DIGITS(z) + uz - 1;
|
|
to = from + need;
|
|
|
|
for (i = 0; i < uz; ++i)
|
|
*to-- = *from--;
|
|
|
|
ZERO(MP_DIGITS(z), need);
|
|
uz += need;
|
|
}
|
|
|
|
if (rest)
|
|
{
|
|
d = 0;
|
|
for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from)
|
|
{
|
|
mp_digit save = *from;
|
|
|
|
*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
|
|
d = save;
|
|
}
|
|
|
|
d >>= (MP_DIGIT_BIT - rest);
|
|
if (d != 0)
|
|
{
|
|
*from = d;
|
|
uz += extra;
|
|
}
|
|
}
|
|
|
|
z->used = uz;
|
|
CLAMP(z);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
|
|
The sign of the result is always zero/positive.
|
|
*/
|
|
static int
|
|
s_qsub(mp_int z, mp_size p2)
|
|
{
|
|
mp_digit hi = (1u << (p2 % MP_DIGIT_BIT)),
|
|
*zp;
|
|
mp_size tdig = (p2 / MP_DIGIT_BIT),
|
|
pos;
|
|
mp_word w = 0;
|
|
|
|
if (!s_pad(z, tdig + 1))
|
|
return 0;
|
|
|
|
for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp)
|
|
{
|
|
w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word) *zp;
|
|
|
|
*zp = LOWER_HALF(w);
|
|
w = UPPER_HALF(w) ? 0 : 1;
|
|
}
|
|
|
|
w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word) *zp;
|
|
*zp = LOWER_HALF(w);
|
|
|
|
assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
|
|
|
|
z->sign = MP_ZPOS;
|
|
CLAMP(z);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
s_dp2k(mp_int z)
|
|
{
|
|
int k = 0;
|
|
mp_digit *dp = MP_DIGITS(z),
|
|
d;
|
|
|
|
if (MP_USED(z) == 1 && *dp == 0)
|
|
return 1;
|
|
|
|
while (*dp == 0)
|
|
{
|
|
k += MP_DIGIT_BIT;
|
|
++dp;
|
|
}
|
|
|
|
d = *dp;
|
|
while ((d & 1) == 0)
|
|
{
|
|
d >>= 1;
|
|
++k;
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
static int
|
|
s_isp2(mp_int z)
|
|
{
|
|
mp_size uz = MP_USED(z),
|
|
k = 0;
|
|
mp_digit *dz = MP_DIGITS(z),
|
|
d;
|
|
|
|
while (uz > 1)
|
|
{
|
|
if (*dz++ != 0)
|
|
return -1;
|
|
k += MP_DIGIT_BIT;
|
|
--uz;
|
|
}
|
|
|
|
d = *dz;
|
|
while (d > 1)
|
|
{
|
|
if (d & 1)
|
|
return -1;
|
|
++k;
|
|
d >>= 1;
|
|
}
|
|
|
|
return (int) k;
|
|
}
|
|
|
|
static int
|
|
s_2expt(mp_int z, mp_small k)
|
|
{
|
|
mp_size ndig,
|
|
rest;
|
|
mp_digit *dz;
|
|
|
|
ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
|
|
rest = k % MP_DIGIT_BIT;
|
|
|
|
if (!s_pad(z, ndig))
|
|
return 0;
|
|
|
|
dz = MP_DIGITS(z);
|
|
ZERO(dz, ndig);
|
|
*(dz + ndig - 1) = (1u << rest);
|
|
z->used = ndig;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
s_norm(mp_int a, mp_int b)
|
|
{
|
|
mp_digit d = b->digits[MP_USED(b) - 1];
|
|
int k = 0;
|
|
|
|
while (d < (1u << (mp_digit) (MP_DIGIT_BIT - 1)))
|
|
{ /* d < (MP_RADIX / 2) */
|
|
d <<= 1;
|
|
++k;
|
|
}
|
|
|
|
/* These multiplications can't fail */
|
|
if (k != 0)
|
|
{
|
|
(void) s_qmul(a, (mp_size) k);
|
|
(void) s_qmul(b, (mp_size) k);
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
static mp_result
|
|
s_brmu(mp_int z, mp_int m)
|
|
{
|
|
mp_size um = MP_USED(m) * 2;
|
|
|
|
if (!s_pad(z, um))
|
|
return MP_MEMORY;
|
|
|
|
s_2expt(z, MP_DIGIT_BIT * um);
|
|
return mp_int_div(z, m, z, NULL);
|
|
}
|
|
|
|
static int
|
|
s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
|
|
{
|
|
mp_size um = MP_USED(m),
|
|
umb_p1,
|
|
umb_m1;
|
|
|
|
umb_p1 = (um + 1) * MP_DIGIT_BIT;
|
|
umb_m1 = (um - 1) * MP_DIGIT_BIT;
|
|
|
|
if (mp_int_copy(x, q1) != MP_OK)
|
|
return 0;
|
|
|
|
/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
|
|
s_qdiv(q1, umb_m1);
|
|
UMUL(q1, mu, q2);
|
|
s_qdiv(q2, umb_p1);
|
|
|
|
/* Set x = x mod b^(k+1) */
|
|
s_qmod(x, umb_p1);
|
|
|
|
/*
|
|
* Now, q is a guess for the quotient a / m. Compute x - q * m mod
|
|
* b^(k+1), replacing x. This may be off by a factor of 2m, but no more
|
|
* than that.
|
|
*/
|
|
UMUL(q2, m, q1);
|
|
s_qmod(q1, umb_p1);
|
|
(void) mp_int_sub(x, q1, x); /* can't fail */
|
|
|
|
/*
|
|
* The result may be < 0; if it is, add b^(k+1) to pin it in the proper
|
|
* range.
|
|
*/
|
|
if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
|
|
return 0;
|
|
|
|
/*
|
|
* If x > m, we need to back it off until it is in range. This will be
|
|
* required at most twice.
|
|
*/
|
|
if (mp_int_compare(x, m) >= 0)
|
|
{
|
|
(void) mp_int_sub(x, m, x);
|
|
if (mp_int_compare(x, m) >= 0)
|
|
{
|
|
(void) mp_int_sub(x, m, x);
|
|
}
|
|
}
|
|
|
|
/* At this point, x has been properly reduced. */
|
|
return 1;
|
|
}
|
|
|
|
/* Perform modular exponentiation using Barrett's method, where mu is the
|
|
reduction constant for m. Assumes a < m, b > 0. */
|
|
static mp_result
|
|
s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
|
|
{
|
|
mp_digit umu = MP_USED(mu);
|
|
mp_digit *db = MP_DIGITS(b);
|
|
mp_digit *dbt = db + MP_USED(b) - 1;
|
|
|
|
DECLARE_TEMP(3);
|
|
REQUIRE(GROW(TEMP(0), 4 * umu));
|
|
REQUIRE(GROW(TEMP(1), 4 * umu));
|
|
REQUIRE(GROW(TEMP(2), 4 * umu));
|
|
ZERO(TEMP(0)->digits, TEMP(0)->alloc);
|
|
ZERO(TEMP(1)->digits, TEMP(1)->alloc);
|
|
ZERO(TEMP(2)->digits, TEMP(2)->alloc);
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
|
|
/* Take care of low-order digits */
|
|
while (db < dbt)
|
|
{
|
|
mp_digit d = *db;
|
|
|
|
for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
|
|
{
|
|
if (d & 1)
|
|
{
|
|
/* The use of a second temporary avoids allocation */
|
|
UMUL(c, a, TEMP(0));
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
|
|
{
|
|
REQUIRE(MP_MEMORY);
|
|
}
|
|
mp_int_copy(TEMP(0), c);
|
|
}
|
|
|
|
USQR(a, TEMP(0));
|
|
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
|
|
{
|
|
REQUIRE(MP_MEMORY);
|
|
}
|
|
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
|
|
mp_int_copy(TEMP(0), a);
|
|
}
|
|
|
|
++db;
|
|
}
|
|
|
|
/* Take care of highest-order digit */
|
|
mp_digit d = *dbt;
|
|
|
|
for (;;)
|
|
{
|
|
if (d & 1)
|
|
{
|
|
UMUL(c, a, TEMP(0));
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
|
|
{
|
|
REQUIRE(MP_MEMORY);
|
|
}
|
|
mp_int_copy(TEMP(0), c);
|
|
}
|
|
|
|
d >>= 1;
|
|
if (!d)
|
|
break;
|
|
|
|
USQR(a, TEMP(0));
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
|
|
{
|
|
REQUIRE(MP_MEMORY);
|
|
}
|
|
(void) mp_int_copy(TEMP(0), a);
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
/* Division of nonnegative integers
|
|
|
|
This function implements division algorithm for unsigned multi-precision
|
|
integers. The algorithm is based on Algorithm D from Knuth's "The Art of
|
|
Computer Programming", 3rd ed. 1998, pg 272-273.
|
|
|
|
We diverge from Knuth's algorithm in that we do not perform the subtraction
|
|
from the remainder until we have determined that we have the correct
|
|
quotient digit. This makes our algorithm less efficient that Knuth because
|
|
we might have to perform multiple multiplication and comparison steps before
|
|
the subtraction. The advantage is that it is easy to implement and ensure
|
|
correctness without worrying about underflow from the subtraction.
|
|
|
|
inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
|
|
v a n digit integer in base b (b is 2^MP_DIGIT_BIT)
|
|
n >= 1
|
|
m >= 0
|
|
outputs: u / v stored in u
|
|
u % v stored in v
|
|
*/
|
|
static mp_result
|
|
s_udiv_knuth(mp_int u, mp_int v)
|
|
{
|
|
/* Force signs to positive */
|
|
u->sign = MP_ZPOS;
|
|
v->sign = MP_ZPOS;
|
|
|
|
/* Use simple division algorithm when v is only one digit long */
|
|
if (MP_USED(v) == 1)
|
|
{
|
|
mp_digit d,
|
|
rem;
|
|
|
|
d = v->digits[0];
|
|
rem = s_ddiv(u, d);
|
|
mp_int_set_value(v, rem);
|
|
return MP_OK;
|
|
}
|
|
|
|
/*
|
|
* Algorithm D
|
|
*
|
|
* The n and m variables are defined as used by Knuth. u is an n digit
|
|
* number with digits u_{n-1}..u_0. v is an n+m digit number with digits
|
|
* from v_{m+n-1}..v_0. We require that n > 1 and m >= 0
|
|
*/
|
|
mp_size n = MP_USED(v);
|
|
mp_size m = MP_USED(u) - n;
|
|
|
|
assert(n > 1);
|
|
/* assert(m >= 0) follows because m is unsigned. */
|
|
|
|
/*
|
|
* D1: Normalize. The normalization step provides the necessary condition
|
|
* for Theorem B, which states that the quotient estimate for q_j, call it
|
|
* qhat
|
|
*
|
|
* qhat = u_{j+n}u_{j+n-1} / v_{n-1}
|
|
*
|
|
* is bounded by
|
|
*
|
|
* qhat - 2 <= q_j <= qhat.
|
|
*
|
|
* That is, qhat is always greater than the actual quotient digit q, and
|
|
* it is never more than two larger than the actual quotient digit.
|
|
*/
|
|
int k = s_norm(u, v);
|
|
|
|
/*
|
|
* Extend size of u by one if needed.
|
|
*
|
|
* The algorithm begins with a value of u that has one more digit of
|
|
* input. The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0.
|
|
* If the multiplication did not increase the number of digits of u, we
|
|
* need to add a leading zero here.
|
|
*/
|
|
if (k == 0 || MP_USED(u) != m + n + 1)
|
|
{
|
|
if (!s_pad(u, m + n + 1))
|
|
return MP_MEMORY;
|
|
u->digits[m + n] = 0;
|
|
u->used = m + n + 1;
|
|
}
|
|
|
|
/*
|
|
* Add a leading 0 to v.
|
|
*
|
|
* The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need
|
|
* to add the leading zero to v here to ensure that the multiplication
|
|
* will produce the full n+1 digit result.
|
|
*/
|
|
if (!s_pad(v, n + 1))
|
|
return MP_MEMORY;
|
|
v->digits[n] = 0;
|
|
|
|
/*
|
|
* Initialize temporary variables q and t. q allocates space for m+1
|
|
* digits to store the quotient digits t allocates space for n+1 digits to
|
|
* hold the result of q_j*v
|
|
*/
|
|
DECLARE_TEMP(2);
|
|
REQUIRE(GROW(TEMP(0), m + 1));
|
|
REQUIRE(GROW(TEMP(1), n + 1));
|
|
|
|
/* D2: Initialize j */
|
|
int j = m;
|
|
mpz_t r;
|
|
|
|
r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */
|
|
r.used = n + 1;
|
|
r.sign = MP_ZPOS;
|
|
r.alloc = MP_ALLOC(u);
|
|
ZERO(TEMP(1)->digits, TEMP(1)->alloc);
|
|
|
|
/* Calculate the m+1 digits of the quotient result */
|
|
for (; j >= 0; j--)
|
|
{
|
|
/* D3: Calculate q' */
|
|
/* r->digits is aligned to position j of the number u */
|
|
mp_word pfx,
|
|
qhat;
|
|
|
|
pfx = r.digits[n];
|
|
pfx <<= MP_DIGIT_BIT / 2;
|
|
pfx <<= MP_DIGIT_BIT / 2;
|
|
pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */
|
|
|
|
qhat = pfx / v->digits[n - 1];
|
|
|
|
/*
|
|
* Check to see if qhat > b, and decrease qhat if so. Theorem B
|
|
* guarantess that qhat is at most 2 larger than the actual value, so
|
|
* it is possible that qhat is greater than the maximum value that
|
|
* will fit in a digit
|
|
*/
|
|
if (qhat > MP_DIGIT_MAX)
|
|
qhat = MP_DIGIT_MAX;
|
|
|
|
/*
|
|
* D4,D5,D6: Multiply qhat * v and test for a correct value of q
|
|
*
|
|
* We proceed a bit different than the way described by Knuth. This
|
|
* way is simpler but less efficent. Instead of doing the multiply and
|
|
* subtract then checking for underflow, we first do the multiply of
|
|
* qhat * v and see if it is larger than the current remainder r. If
|
|
* it is larger, we decrease qhat by one and try again. We may need to
|
|
* decrease qhat one more time before we get a value that is smaller
|
|
* than r.
|
|
*
|
|
* This way is less efficent than Knuth becuase we do more multiplies,
|
|
* but we do not need to worry about underflow this way.
|
|
*/
|
|
/* t = qhat * v */
|
|
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
|
|
TEMP(1)->used = n + 1;
|
|
CLAMP(TEMP(1));
|
|
|
|
/* Clamp r for the comparison. Comparisons do not like leading zeros. */
|
|
CLAMP(&r);
|
|
if (s_ucmp(TEMP(1), &r) > 0)
|
|
{ /* would the remainder be negative? */
|
|
qhat -= 1; /* try a smaller q */
|
|
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
|
|
TEMP(1)->used = n + 1;
|
|
CLAMP(TEMP(1));
|
|
if (s_ucmp(TEMP(1), &r) > 0)
|
|
{ /* would the remainder be negative? */
|
|
assert(qhat > 0);
|
|
qhat -= 1; /* try a smaller q */
|
|
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
|
|
TEMP(1)->used = n + 1;
|
|
CLAMP(TEMP(1));
|
|
}
|
|
assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us.");
|
|
}
|
|
|
|
/*
|
|
* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be
|
|
* n+1 digits long.
|
|
*/
|
|
r.used = n + 1;
|
|
|
|
/*
|
|
* D4: Multiply and subtract
|
|
*
|
|
* Note: The multiply was completed above so we only need to subtract
|
|
* here.
|
|
*/
|
|
s_usub(r.digits, TEMP(1)->digits, r.digits, r.used, TEMP(1)->used);
|
|
|
|
/*
|
|
* D5: Test remainder
|
|
*
|
|
* Note: Not needed because we always check that qhat is the correct
|
|
* value before performing the subtract. Value cast to mp_digit to
|
|
* prevent warning, qhat has been clamped to MP_DIGIT_MAX
|
|
*/
|
|
TEMP(0)->digits[j] = (mp_digit) qhat;
|
|
|
|
/*
|
|
* D6: Add back Note: Not needed because we always check that qhat is
|
|
* the correct value before performing the subtract.
|
|
*/
|
|
|
|
/* D7: Loop on j */
|
|
r.digits--;
|
|
ZERO(TEMP(1)->digits, TEMP(1)->alloc);
|
|
}
|
|
|
|
/* Get rid of leading zeros in q */
|
|
TEMP(0)->used = m + 1;
|
|
CLAMP(TEMP(0));
|
|
|
|
/* Denormalize the remainder */
|
|
CLAMP(u); /* use u here because the r.digits pointer is
|
|
* off-by-one */
|
|
if (k != 0)
|
|
s_qdiv(u, k);
|
|
|
|
mp_int_copy(u, v); /* ok: 0 <= r < v */
|
|
mp_int_copy(TEMP(0), u); /* ok: q <= u */
|
|
|
|
CLEANUP_TEMP();
|
|
return MP_OK;
|
|
}
|
|
|
|
static int
|
|
s_outlen(mp_int z, mp_size r)
|
|
{
|
|
assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
|
|
|
|
mp_result bits = mp_int_count_bits(z);
|
|
double raw = (double) bits * s_log2[r];
|
|
|
|
return (int) (raw + 0.999999);
|
|
}
|
|
|
|
static mp_size
|
|
s_inlen(int len, mp_size r)
|
|
{
|
|
double raw = (double) len / s_log2[r];
|
|
mp_size bits = (mp_size) (raw + 0.5);
|
|
|
|
return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
|
|
}
|
|
|
|
static int
|
|
s_ch2val(char c, int r)
|
|
{
|
|
int out;
|
|
|
|
/*
|
|
* In some locales, isalpha() accepts characters outside the range A-Z,
|
|
* producing out<0 or out>=36. The "out >= r" check will always catch
|
|
* out>=36. Though nothing explicitly catches out<0, our caller reacts
|
|
* the same way to every negative return value.
|
|
*/
|
|
if (isdigit((unsigned char) c))
|
|
out = c - '0';
|
|
else if (r > 10 && isalpha((unsigned char) c))
|
|
out = toupper((unsigned char) c) - 'A' + 10;
|
|
else
|
|
return -1;
|
|
|
|
return (out >= r) ? -1 : out;
|
|
}
|
|
|
|
static char
|
|
s_val2ch(int v, int caps)
|
|
{
|
|
assert(v >= 0);
|
|
|
|
if (v < 10)
|
|
{
|
|
return v + '0';
|
|
}
|
|
else
|
|
{
|
|
char out = (v - 10) + 'a';
|
|
|
|
if (caps)
|
|
{
|
|
return toupper((unsigned char) out);
|
|
}
|
|
else
|
|
{
|
|
return out;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
s_2comp(unsigned char *buf, int len)
|
|
{
|
|
unsigned short s = 1;
|
|
|
|
for (int i = len - 1; i >= 0; --i)
|
|
{
|
|
unsigned char c = ~buf[i];
|
|
|
|
s = c + s;
|
|
c = s & UCHAR_MAX;
|
|
s >>= CHAR_BIT;
|
|
|
|
buf[i] = c;
|
|
}
|
|
|
|
/* last carry out is ignored */
|
|
}
|
|
|
|
static mp_result
|
|
s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
|
|
{
|
|
int pos = 0,
|
|
limit = *limpos;
|
|
mp_size uz = MP_USED(z);
|
|
mp_digit *dz = MP_DIGITS(z);
|
|
|
|
while (uz > 0 && pos < limit)
|
|
{
|
|
mp_digit d = *dz++;
|
|
int i;
|
|
|
|
for (i = sizeof(mp_digit); i > 0 && pos < limit; --i)
|
|
{
|
|
buf[pos++] = (unsigned char) d;
|
|
d >>= CHAR_BIT;
|
|
|
|
/* Don't write leading zeroes */
|
|
if (d == 0 && uz == 1)
|
|
i = 0; /* exit loop without signaling truncation */
|
|
}
|
|
|
|
/* Detect truncation (loop exited with pos >= limit) */
|
|
if (i > 0)
|
|
break;
|
|
|
|
--uz;
|
|
}
|
|
|
|
if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1)))
|
|
{
|
|
if (pos < limit)
|
|
{
|
|
buf[pos++] = 0;
|
|
}
|
|
else
|
|
{
|
|
uz = 1;
|
|
}
|
|
}
|
|
|
|
/* Digits are in reverse order, fix that */
|
|
REV(buf, pos);
|
|
|
|
/* Return the number of bytes actually written */
|
|
*limpos = pos;
|
|
|
|
return (uz == 0) ? MP_OK : MP_TRUNC;
|
|
}
|
|
|
|
/* Here there be dragons */
|