postgresql/contrib/hstore/hstore_op.c
Tom Lane 4bd1994650 Make DatumGetFoo/PG_GETARG_FOO/PG_RETURN_FOO macro names more consistent.
By project convention, these names should include "P" when dealing with a
pointer type; that is, if the result of a GETARG macro is of type FOO *,
it should be called PG_GETARG_FOO_P not just PG_GETARG_FOO.  Some newer
types such as JSONB and ranges had not followed the convention, and a
number of contrib modules hadn't gotten that memo either.  Rename the
offending macros to improve consistency.

In passing, fix a few places that thought PG_DETOAST_DATUM() returns
a Datum; it does not, it returns "struct varlena *".  Applying
DatumGetPointer to that happens not to cause any bad effects today,
but it's formally wrong.  Also, adjust an ltree macro that was designed
without any thought for what pgindent would do with it.

This is all cosmetic and shouldn't have any impact on generated code.

Mark Dilger, some further tweaks by me

Discussion: https://postgr.es/m/EA5676F4-766F-4F38-8348-ECC7DB427C6A@gmail.com
2017-09-18 15:21:23 -04:00

1256 lines
27 KiB
C

/*
* contrib/hstore/hstore_op.c
*/
#include "postgres.h"
#include "access/hash.h"
#include "access/htup_details.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "hstore.h"
/* old names for C functions */
HSTORE_POLLUTE(hstore_fetchval, fetchval);
HSTORE_POLLUTE(hstore_exists, exists);
HSTORE_POLLUTE(hstore_defined, defined);
HSTORE_POLLUTE(hstore_delete, delete);
HSTORE_POLLUTE(hstore_concat, hs_concat);
HSTORE_POLLUTE(hstore_contains, hs_contains);
HSTORE_POLLUTE(hstore_contained, hs_contained);
HSTORE_POLLUTE(hstore_akeys, akeys);
HSTORE_POLLUTE(hstore_avals, avals);
HSTORE_POLLUTE(hstore_skeys, skeys);
HSTORE_POLLUTE(hstore_svals, svals);
HSTORE_POLLUTE(hstore_each, each);
/*
* We're often finding a sequence of keys in ascending order. The
* "lowbound" parameter is used to cache lower bounds of searches
* between calls, based on this assumption. Pass NULL for it for
* one-off or unordered searches.
*/
int
hstoreFindKey(HStore *hs, int *lowbound, char *key, int keylen)
{
HEntry *entries = ARRPTR(hs);
int stopLow = lowbound ? *lowbound : 0;
int stopHigh = HS_COUNT(hs);
int stopMiddle;
char *base = STRPTR(hs);
while (stopLow < stopHigh)
{
int difference;
stopMiddle = stopLow + (stopHigh - stopLow) / 2;
if (HSTORE_KEYLEN(entries, stopMiddle) == keylen)
difference = memcmp(HSTORE_KEY(entries, base, stopMiddle), key, keylen);
else
difference = (HSTORE_KEYLEN(entries, stopMiddle) > keylen) ? 1 : -1;
if (difference == 0)
{
if (lowbound)
*lowbound = stopMiddle + 1;
return stopMiddle;
}
else if (difference < 0)
stopLow = stopMiddle + 1;
else
stopHigh = stopMiddle;
}
if (lowbound)
*lowbound = stopLow;
return -1;
}
Pairs *
hstoreArrayToPairs(ArrayType *a, int *npairs)
{
Datum *key_datums;
bool *key_nulls;
int key_count;
Pairs *key_pairs;
int bufsiz;
int i,
j;
deconstruct_array(a,
TEXTOID, -1, false, 'i',
&key_datums, &key_nulls, &key_count);
if (key_count == 0)
{
*npairs = 0;
return NULL;
}
/*
* A text array uses at least eight bytes per element, so any overflow in
* "key_count * sizeof(Pairs)" is small enough for palloc() to catch.
* However, credible improvements to the array format could invalidate
* that assumption. Therefore, use an explicit check rather than relying
* on palloc() to complain.
*/
if (key_count > MaxAllocSize / sizeof(Pairs))
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of pairs (%d) exceeds the maximum allowed (%d)",
key_count, (int) (MaxAllocSize / sizeof(Pairs)))));
key_pairs = palloc(sizeof(Pairs) * key_count);
for (i = 0, j = 0; i < key_count; i++)
{
if (!key_nulls[i])
{
key_pairs[j].key = VARDATA(key_datums[i]);
key_pairs[j].keylen = VARSIZE(key_datums[i]) - VARHDRSZ;
key_pairs[j].val = NULL;
key_pairs[j].vallen = 0;
key_pairs[j].needfree = 0;
key_pairs[j].isnull = 1;
j++;
}
}
*npairs = hstoreUniquePairs(key_pairs, j, &bufsiz);
return key_pairs;
}
PG_FUNCTION_INFO_V1(hstore_fetchval);
Datum
hstore_fetchval(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
text *key = PG_GETARG_TEXT_PP(1);
HEntry *entries = ARRPTR(hs);
text *out;
int idx = hstoreFindKey(hs, NULL,
VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key));
if (idx < 0 || HSTORE_VALISNULL(entries, idx))
PG_RETURN_NULL();
out = cstring_to_text_with_len(HSTORE_VAL(entries, STRPTR(hs), idx),
HSTORE_VALLEN(entries, idx));
PG_RETURN_TEXT_P(out);
}
PG_FUNCTION_INFO_V1(hstore_exists);
Datum
hstore_exists(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
text *key = PG_GETARG_TEXT_PP(1);
int idx = hstoreFindKey(hs, NULL,
VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key));
PG_RETURN_BOOL(idx >= 0);
}
PG_FUNCTION_INFO_V1(hstore_exists_any);
Datum
hstore_exists_any(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
ArrayType *keys = PG_GETARG_ARRAYTYPE_P(1);
int nkeys;
Pairs *key_pairs = hstoreArrayToPairs(keys, &nkeys);
int i;
int lowbound = 0;
bool res = false;
/*
* we exploit the fact that the pairs list is already sorted into strictly
* increasing order to narrow the hstoreFindKey search; each search can
* start one entry past the previous "found" entry, or at the lower bound
* of the last search.
*/
for (i = 0; i < nkeys; i++)
{
int idx = hstoreFindKey(hs, &lowbound,
key_pairs[i].key, key_pairs[i].keylen);
if (idx >= 0)
{
res = true;
break;
}
}
PG_RETURN_BOOL(res);
}
PG_FUNCTION_INFO_V1(hstore_exists_all);
Datum
hstore_exists_all(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
ArrayType *keys = PG_GETARG_ARRAYTYPE_P(1);
int nkeys;
Pairs *key_pairs = hstoreArrayToPairs(keys, &nkeys);
int i;
int lowbound = 0;
bool res = true;
/*
* we exploit the fact that the pairs list is already sorted into strictly
* increasing order to narrow the hstoreFindKey search; each search can
* start one entry past the previous "found" entry, or at the lower bound
* of the last search.
*/
for (i = 0; i < nkeys; i++)
{
int idx = hstoreFindKey(hs, &lowbound,
key_pairs[i].key, key_pairs[i].keylen);
if (idx < 0)
{
res = false;
break;
}
}
PG_RETURN_BOOL(res);
}
PG_FUNCTION_INFO_V1(hstore_defined);
Datum
hstore_defined(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
text *key = PG_GETARG_TEXT_PP(1);
HEntry *entries = ARRPTR(hs);
int idx = hstoreFindKey(hs, NULL,
VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key));
bool res = (idx >= 0 && !HSTORE_VALISNULL(entries, idx));
PG_RETURN_BOOL(res);
}
PG_FUNCTION_INFO_V1(hstore_delete);
Datum
hstore_delete(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
text *key = PG_GETARG_TEXT_PP(1);
char *keyptr = VARDATA_ANY(key);
int keylen = VARSIZE_ANY_EXHDR(key);
HStore *out = palloc(VARSIZE(hs));
char *bufs,
*bufd,
*ptrd;
HEntry *es,
*ed;
int i;
int count = HS_COUNT(hs);
int outcount = 0;
SET_VARSIZE(out, VARSIZE(hs));
HS_SETCOUNT(out, count); /* temporary! */
bufs = STRPTR(hs);
es = ARRPTR(hs);
bufd = ptrd = STRPTR(out);
ed = ARRPTR(out);
for (i = 0; i < count; ++i)
{
int len = HSTORE_KEYLEN(es, i);
char *ptrs = HSTORE_KEY(es, bufs, i);
if (!(len == keylen && memcmp(ptrs, keyptr, keylen) == 0))
{
int vallen = HSTORE_VALLEN(es, i);
HS_COPYITEM(ed, bufd, ptrd, ptrs, len, vallen,
HSTORE_VALISNULL(es, i));
++outcount;
}
}
HS_FINALIZE(out, outcount, bufd, ptrd);
PG_RETURN_POINTER(out);
}
PG_FUNCTION_INFO_V1(hstore_delete_array);
Datum
hstore_delete_array(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
HStore *out = palloc(VARSIZE(hs));
int hs_count = HS_COUNT(hs);
char *ps,
*bufd,
*pd;
HEntry *es,
*ed;
int i,
j;
int outcount = 0;
ArrayType *key_array = PG_GETARG_ARRAYTYPE_P(1);
int nkeys;
Pairs *key_pairs = hstoreArrayToPairs(key_array, &nkeys);
SET_VARSIZE(out, VARSIZE(hs));
HS_SETCOUNT(out, hs_count); /* temporary! */
ps = STRPTR(hs);
es = ARRPTR(hs);
bufd = pd = STRPTR(out);
ed = ARRPTR(out);
if (nkeys == 0)
{
/* return a copy of the input, unchanged */
memcpy(out, hs, VARSIZE(hs));
HS_FIXSIZE(out, hs_count);
HS_SETCOUNT(out, hs_count);
PG_RETURN_POINTER(out);
}
/*
* this is in effect a merge between hs and key_pairs, both of which are
* already sorted by (keylen,key); we take keys from hs only
*/
for (i = j = 0; i < hs_count;)
{
int difference;
if (j >= nkeys)
difference = -1;
else
{
int skeylen = HSTORE_KEYLEN(es, i);
if (skeylen == key_pairs[j].keylen)
difference = memcmp(HSTORE_KEY(es, ps, i),
key_pairs[j].key,
key_pairs[j].keylen);
else
difference = (skeylen > key_pairs[j].keylen) ? 1 : -1;
}
if (difference > 0)
++j;
else if (difference == 0)
++i, ++j;
else
{
HS_COPYITEM(ed, bufd, pd,
HSTORE_KEY(es, ps, i), HSTORE_KEYLEN(es, i),
HSTORE_VALLEN(es, i), HSTORE_VALISNULL(es, i));
++outcount;
++i;
}
}
HS_FINALIZE(out, outcount, bufd, pd);
PG_RETURN_POINTER(out);
}
PG_FUNCTION_INFO_V1(hstore_delete_hstore);
Datum
hstore_delete_hstore(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
HStore *hs2 = PG_GETARG_HSTORE_P(1);
HStore *out = palloc(VARSIZE(hs));
int hs_count = HS_COUNT(hs);
int hs2_count = HS_COUNT(hs2);
char *ps,
*ps2,
*bufd,
*pd;
HEntry *es,
*es2,
*ed;
int i,
j;
int outcount = 0;
SET_VARSIZE(out, VARSIZE(hs));
HS_SETCOUNT(out, hs_count); /* temporary! */
ps = STRPTR(hs);
es = ARRPTR(hs);
ps2 = STRPTR(hs2);
es2 = ARRPTR(hs2);
bufd = pd = STRPTR(out);
ed = ARRPTR(out);
if (hs2_count == 0)
{
/* return a copy of the input, unchanged */
memcpy(out, hs, VARSIZE(hs));
HS_FIXSIZE(out, hs_count);
HS_SETCOUNT(out, hs_count);
PG_RETURN_POINTER(out);
}
/*
* this is in effect a merge between hs and hs2, both of which are already
* sorted by (keylen,key); we take keys from hs only; for equal keys, we
* take the value from hs unless the values are equal
*/
for (i = j = 0; i < hs_count;)
{
int difference;
if (j >= hs2_count)
difference = -1;
else
{
int skeylen = HSTORE_KEYLEN(es, i);
int s2keylen = HSTORE_KEYLEN(es2, j);
if (skeylen == s2keylen)
difference = memcmp(HSTORE_KEY(es, ps, i),
HSTORE_KEY(es2, ps2, j),
skeylen);
else
difference = (skeylen > s2keylen) ? 1 : -1;
}
if (difference > 0)
++j;
else if (difference == 0)
{
int svallen = HSTORE_VALLEN(es, i);
int snullval = HSTORE_VALISNULL(es, i);
if (snullval != HSTORE_VALISNULL(es2, j) ||
(!snullval && (svallen != HSTORE_VALLEN(es2, j) ||
memcmp(HSTORE_VAL(es, ps, i),
HSTORE_VAL(es2, ps2, j),
svallen) != 0)))
{
HS_COPYITEM(ed, bufd, pd,
HSTORE_KEY(es, ps, i), HSTORE_KEYLEN(es, i),
svallen, snullval);
++outcount;
}
++i, ++j;
}
else
{
HS_COPYITEM(ed, bufd, pd,
HSTORE_KEY(es, ps, i), HSTORE_KEYLEN(es, i),
HSTORE_VALLEN(es, i), HSTORE_VALISNULL(es, i));
++outcount;
++i;
}
}
HS_FINALIZE(out, outcount, bufd, pd);
PG_RETURN_POINTER(out);
}
PG_FUNCTION_INFO_V1(hstore_concat);
Datum
hstore_concat(PG_FUNCTION_ARGS)
{
HStore *s1 = PG_GETARG_HSTORE_P(0);
HStore *s2 = PG_GETARG_HSTORE_P(1);
HStore *out = palloc(VARSIZE(s1) + VARSIZE(s2));
char *ps1,
*ps2,
*bufd,
*pd;
HEntry *es1,
*es2,
*ed;
int s1idx;
int s2idx;
int s1count = HS_COUNT(s1);
int s2count = HS_COUNT(s2);
int outcount = 0;
SET_VARSIZE(out, VARSIZE(s1) + VARSIZE(s2) - HSHRDSIZE);
HS_SETCOUNT(out, s1count + s2count);
if (s1count == 0)
{
/* return a copy of the input, unchanged */
memcpy(out, s2, VARSIZE(s2));
HS_FIXSIZE(out, s2count);
HS_SETCOUNT(out, s2count);
PG_RETURN_POINTER(out);
}
if (s2count == 0)
{
/* return a copy of the input, unchanged */
memcpy(out, s1, VARSIZE(s1));
HS_FIXSIZE(out, s1count);
HS_SETCOUNT(out, s1count);
PG_RETURN_POINTER(out);
}
ps1 = STRPTR(s1);
ps2 = STRPTR(s2);
bufd = pd = STRPTR(out);
es1 = ARRPTR(s1);
es2 = ARRPTR(s2);
ed = ARRPTR(out);
/*
* this is in effect a merge between s1 and s2, both of which are already
* sorted by (keylen,key); we take s2 for equal keys
*/
for (s1idx = s2idx = 0; s1idx < s1count || s2idx < s2count; ++outcount)
{
int difference;
if (s1idx >= s1count)
difference = 1;
else if (s2idx >= s2count)
difference = -1;
else
{
int s1keylen = HSTORE_KEYLEN(es1, s1idx);
int s2keylen = HSTORE_KEYLEN(es2, s2idx);
if (s1keylen == s2keylen)
difference = memcmp(HSTORE_KEY(es1, ps1, s1idx),
HSTORE_KEY(es2, ps2, s2idx),
s1keylen);
else
difference = (s1keylen > s2keylen) ? 1 : -1;
}
if (difference >= 0)
{
HS_COPYITEM(ed, bufd, pd,
HSTORE_KEY(es2, ps2, s2idx), HSTORE_KEYLEN(es2, s2idx),
HSTORE_VALLEN(es2, s2idx), HSTORE_VALISNULL(es2, s2idx));
++s2idx;
if (difference == 0)
++s1idx;
}
else
{
HS_COPYITEM(ed, bufd, pd,
HSTORE_KEY(es1, ps1, s1idx), HSTORE_KEYLEN(es1, s1idx),
HSTORE_VALLEN(es1, s1idx), HSTORE_VALISNULL(es1, s1idx));
++s1idx;
}
}
HS_FINALIZE(out, outcount, bufd, pd);
PG_RETURN_POINTER(out);
}
PG_FUNCTION_INFO_V1(hstore_slice_to_array);
Datum
hstore_slice_to_array(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
HEntry *entries = ARRPTR(hs);
char *ptr = STRPTR(hs);
ArrayType *key_array = PG_GETARG_ARRAYTYPE_P(1);
ArrayType *aout;
Datum *key_datums;
bool *key_nulls;
Datum *out_datums;
bool *out_nulls;
int key_count;
int i;
deconstruct_array(key_array,
TEXTOID, -1, false, 'i',
&key_datums, &key_nulls, &key_count);
if (key_count == 0)
{
aout = construct_empty_array(TEXTOID);
PG_RETURN_POINTER(aout);
}
out_datums = palloc(sizeof(Datum) * key_count);
out_nulls = palloc(sizeof(bool) * key_count);
for (i = 0; i < key_count; ++i)
{
text *key = (text *) DatumGetPointer(key_datums[i]);
int idx;
if (key_nulls[i])
idx = -1;
else
idx = hstoreFindKey(hs, NULL, VARDATA(key), VARSIZE(key) - VARHDRSZ);
if (idx < 0 || HSTORE_VALISNULL(entries, idx))
{
out_nulls[i] = true;
out_datums[i] = (Datum) 0;
}
else
{
out_datums[i] = PointerGetDatum(
cstring_to_text_with_len(HSTORE_VAL(entries, ptr, idx),
HSTORE_VALLEN(entries, idx)));
out_nulls[i] = false;
}
}
aout = construct_md_array(out_datums, out_nulls,
ARR_NDIM(key_array),
ARR_DIMS(key_array),
ARR_LBOUND(key_array),
TEXTOID, -1, false, 'i');
PG_RETURN_POINTER(aout);
}
PG_FUNCTION_INFO_V1(hstore_slice_to_hstore);
Datum
hstore_slice_to_hstore(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
HEntry *entries = ARRPTR(hs);
char *ptr = STRPTR(hs);
ArrayType *key_array = PG_GETARG_ARRAYTYPE_P(1);
HStore *out;
int nkeys;
Pairs *key_pairs = hstoreArrayToPairs(key_array, &nkeys);
Pairs *out_pairs;
int bufsiz;
int lastidx = 0;
int i;
int out_count = 0;
if (nkeys == 0)
{
out = hstorePairs(NULL, 0, 0);
PG_RETURN_POINTER(out);
}
/* hstoreArrayToPairs() checked overflow */
out_pairs = palloc(sizeof(Pairs) * nkeys);
bufsiz = 0;
/*
* we exploit the fact that the pairs list is already sorted into strictly
* increasing order to narrow the hstoreFindKey search; each search can
* start one entry past the previous "found" entry, or at the lower bound
* of the last search.
*/
for (i = 0; i < nkeys; ++i)
{
int idx = hstoreFindKey(hs, &lastidx,
key_pairs[i].key, key_pairs[i].keylen);
if (idx >= 0)
{
out_pairs[out_count].key = key_pairs[i].key;
bufsiz += (out_pairs[out_count].keylen = key_pairs[i].keylen);
out_pairs[out_count].val = HSTORE_VAL(entries, ptr, idx);
bufsiz += (out_pairs[out_count].vallen = HSTORE_VALLEN(entries, idx));
out_pairs[out_count].isnull = HSTORE_VALISNULL(entries, idx);
out_pairs[out_count].needfree = false;
++out_count;
}
}
/*
* we don't use uniquePairs here because we know that the pairs list is
* already sorted and uniq'ed.
*/
out = hstorePairs(out_pairs, out_count, bufsiz);
PG_RETURN_POINTER(out);
}
PG_FUNCTION_INFO_V1(hstore_akeys);
Datum
hstore_akeys(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
Datum *d;
ArrayType *a;
HEntry *entries = ARRPTR(hs);
char *base = STRPTR(hs);
int count = HS_COUNT(hs);
int i;
if (count == 0)
{
a = construct_empty_array(TEXTOID);
PG_RETURN_POINTER(a);
}
d = (Datum *) palloc(sizeof(Datum) * count);
for (i = 0; i < count; ++i)
{
text *t = cstring_to_text_with_len(HSTORE_KEY(entries, base, i),
HSTORE_KEYLEN(entries, i));
d[i] = PointerGetDatum(t);
}
a = construct_array(d, count,
TEXTOID, -1, false, 'i');
PG_RETURN_POINTER(a);
}
PG_FUNCTION_INFO_V1(hstore_avals);
Datum
hstore_avals(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
Datum *d;
bool *nulls;
ArrayType *a;
HEntry *entries = ARRPTR(hs);
char *base = STRPTR(hs);
int count = HS_COUNT(hs);
int lb = 1;
int i;
if (count == 0)
{
a = construct_empty_array(TEXTOID);
PG_RETURN_POINTER(a);
}
d = (Datum *) palloc(sizeof(Datum) * count);
nulls = (bool *) palloc(sizeof(bool) * count);
for (i = 0; i < count; ++i)
{
if (HSTORE_VALISNULL(entries, i))
{
d[i] = (Datum) 0;
nulls[i] = true;
}
else
{
text *item = cstring_to_text_with_len(HSTORE_VAL(entries, base, i),
HSTORE_VALLEN(entries, i));
d[i] = PointerGetDatum(item);
nulls[i] = false;
}
}
a = construct_md_array(d, nulls, 1, &count, &lb,
TEXTOID, -1, false, 'i');
PG_RETURN_POINTER(a);
}
static ArrayType *
hstore_to_array_internal(HStore *hs, int ndims)
{
HEntry *entries = ARRPTR(hs);
char *base = STRPTR(hs);
int count = HS_COUNT(hs);
int out_size[2] = {0, 2};
int lb[2] = {1, 1};
Datum *out_datums;
bool *out_nulls;
int i;
Assert(ndims < 3);
if (count == 0 || ndims == 0)
return construct_empty_array(TEXTOID);
out_size[0] = count * 2 / ndims;
out_datums = palloc(sizeof(Datum) * count * 2);
out_nulls = palloc(sizeof(bool) * count * 2);
for (i = 0; i < count; ++i)
{
text *key = cstring_to_text_with_len(HSTORE_KEY(entries, base, i),
HSTORE_KEYLEN(entries, i));
out_datums[i * 2] = PointerGetDatum(key);
out_nulls[i * 2] = false;
if (HSTORE_VALISNULL(entries, i))
{
out_datums[i * 2 + 1] = (Datum) 0;
out_nulls[i * 2 + 1] = true;
}
else
{
text *item = cstring_to_text_with_len(HSTORE_VAL(entries, base, i),
HSTORE_VALLEN(entries, i));
out_datums[i * 2 + 1] = PointerGetDatum(item);
out_nulls[i * 2 + 1] = false;
}
}
return construct_md_array(out_datums, out_nulls,
ndims, out_size, lb,
TEXTOID, -1, false, 'i');
}
PG_FUNCTION_INFO_V1(hstore_to_array);
Datum
hstore_to_array(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
ArrayType *out = hstore_to_array_internal(hs, 1);
PG_RETURN_POINTER(out);
}
PG_FUNCTION_INFO_V1(hstore_to_matrix);
Datum
hstore_to_matrix(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
ArrayType *out = hstore_to_array_internal(hs, 2);
PG_RETURN_POINTER(out);
}
/*
* Common initialization function for the various set-returning
* funcs. fcinfo is only passed if the function is to return a
* composite; it will be used to look up the return tupledesc.
* we stash a copy of the hstore in the multi-call context in
* case it was originally toasted. (At least I assume that's why;
* there was no explanatory comment in the original code. --AG)
*/
static void
setup_firstcall(FuncCallContext *funcctx, HStore *hs,
FunctionCallInfoData *fcinfo)
{
MemoryContext oldcontext;
HStore *st;
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
st = (HStore *) palloc(VARSIZE(hs));
memcpy(st, hs, VARSIZE(hs));
funcctx->user_fctx = (void *) st;
if (fcinfo)
{
TupleDesc tupdesc;
/* Build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
}
MemoryContextSwitchTo(oldcontext);
}
PG_FUNCTION_INFO_V1(hstore_skeys);
Datum
hstore_skeys(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
HStore *hs;
int i;
if (SRF_IS_FIRSTCALL())
{
hs = PG_GETARG_HSTORE_P(0);
funcctx = SRF_FIRSTCALL_INIT();
setup_firstcall(funcctx, hs, NULL);
}
funcctx = SRF_PERCALL_SETUP();
hs = (HStore *) funcctx->user_fctx;
i = funcctx->call_cntr;
if (i < HS_COUNT(hs))
{
HEntry *entries = ARRPTR(hs);
text *item;
item = cstring_to_text_with_len(HSTORE_KEY(entries, STRPTR(hs), i),
HSTORE_KEYLEN(entries, i));
SRF_RETURN_NEXT(funcctx, PointerGetDatum(item));
}
SRF_RETURN_DONE(funcctx);
}
PG_FUNCTION_INFO_V1(hstore_svals);
Datum
hstore_svals(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
HStore *hs;
int i;
if (SRF_IS_FIRSTCALL())
{
hs = PG_GETARG_HSTORE_P(0);
funcctx = SRF_FIRSTCALL_INIT();
setup_firstcall(funcctx, hs, NULL);
}
funcctx = SRF_PERCALL_SETUP();
hs = (HStore *) funcctx->user_fctx;
i = funcctx->call_cntr;
if (i < HS_COUNT(hs))
{
HEntry *entries = ARRPTR(hs);
if (HSTORE_VALISNULL(entries, i))
{
ReturnSetInfo *rsi;
/* ugly ugly ugly. why no macro for this? */
(funcctx)->call_cntr++;
rsi = (ReturnSetInfo *) fcinfo->resultinfo;
rsi->isDone = ExprMultipleResult;
PG_RETURN_NULL();
}
else
{
text *item;
item = cstring_to_text_with_len(HSTORE_VAL(entries, STRPTR(hs), i),
HSTORE_VALLEN(entries, i));
SRF_RETURN_NEXT(funcctx, PointerGetDatum(item));
}
}
SRF_RETURN_DONE(funcctx);
}
PG_FUNCTION_INFO_V1(hstore_contains);
Datum
hstore_contains(PG_FUNCTION_ARGS)
{
HStore *val = PG_GETARG_HSTORE_P(0);
HStore *tmpl = PG_GETARG_HSTORE_P(1);
bool res = true;
HEntry *te = ARRPTR(tmpl);
char *tstr = STRPTR(tmpl);
HEntry *ve = ARRPTR(val);
char *vstr = STRPTR(val);
int tcount = HS_COUNT(tmpl);
int lastidx = 0;
int i;
/*
* we exploit the fact that keys in "tmpl" are in strictly increasing
* order to narrow the hstoreFindKey search; each search can start one
* entry past the previous "found" entry, or at the lower bound of the
* search
*/
for (i = 0; res && i < tcount; ++i)
{
int idx = hstoreFindKey(val, &lastidx,
HSTORE_KEY(te, tstr, i),
HSTORE_KEYLEN(te, i));
if (idx >= 0)
{
bool nullval = HSTORE_VALISNULL(te, i);
int vallen = HSTORE_VALLEN(te, i);
if (nullval != HSTORE_VALISNULL(ve, idx) ||
(!nullval && (vallen != HSTORE_VALLEN(ve, idx) ||
memcmp(HSTORE_VAL(te, tstr, i),
HSTORE_VAL(ve, vstr, idx),
vallen) != 0)))
res = false;
}
else
res = false;
}
PG_RETURN_BOOL(res);
}
PG_FUNCTION_INFO_V1(hstore_contained);
Datum
hstore_contained(PG_FUNCTION_ARGS)
{
PG_RETURN_DATUM(DirectFunctionCall2(hstore_contains,
PG_GETARG_DATUM(1),
PG_GETARG_DATUM(0)
));
}
PG_FUNCTION_INFO_V1(hstore_each);
Datum
hstore_each(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
HStore *hs;
int i;
if (SRF_IS_FIRSTCALL())
{
hs = PG_GETARG_HSTORE_P(0);
funcctx = SRF_FIRSTCALL_INIT();
setup_firstcall(funcctx, hs, fcinfo);
}
funcctx = SRF_PERCALL_SETUP();
hs = (HStore *) funcctx->user_fctx;
i = funcctx->call_cntr;
if (i < HS_COUNT(hs))
{
HEntry *entries = ARRPTR(hs);
char *ptr = STRPTR(hs);
Datum res,
dvalues[2];
bool nulls[2] = {false, false};
text *item;
HeapTuple tuple;
item = cstring_to_text_with_len(HSTORE_KEY(entries, ptr, i),
HSTORE_KEYLEN(entries, i));
dvalues[0] = PointerGetDatum(item);
if (HSTORE_VALISNULL(entries, i))
{
dvalues[1] = (Datum) 0;
nulls[1] = true;
}
else
{
item = cstring_to_text_with_len(HSTORE_VAL(entries, ptr, i),
HSTORE_VALLEN(entries, i));
dvalues[1] = PointerGetDatum(item);
}
tuple = heap_form_tuple(funcctx->tuple_desc, dvalues, nulls);
res = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, PointerGetDatum(res));
}
SRF_RETURN_DONE(funcctx);
}
/*
* btree sort order for hstores isn't intended to be useful; we really only
* care about equality versus non-equality. we compare the entire string
* buffer first, then the entry pos array.
*/
PG_FUNCTION_INFO_V1(hstore_cmp);
Datum
hstore_cmp(PG_FUNCTION_ARGS)
{
HStore *hs1 = PG_GETARG_HSTORE_P(0);
HStore *hs2 = PG_GETARG_HSTORE_P(1);
int hcount1 = HS_COUNT(hs1);
int hcount2 = HS_COUNT(hs2);
int res = 0;
if (hcount1 == 0 || hcount2 == 0)
{
/*
* if either operand is empty, and the other is nonempty, the nonempty
* one is larger. If both are empty they are equal.
*/
if (hcount1 > 0)
res = 1;
else if (hcount2 > 0)
res = -1;
}
else
{
/* here we know both operands are nonempty */
char *str1 = STRPTR(hs1);
char *str2 = STRPTR(hs2);
HEntry *ent1 = ARRPTR(hs1);
HEntry *ent2 = ARRPTR(hs2);
size_t len1 = HSE_ENDPOS(ent1[2 * hcount1 - 1]);
size_t len2 = HSE_ENDPOS(ent2[2 * hcount2 - 1]);
res = memcmp(str1, str2, Min(len1, len2));
if (res == 0)
{
if (len1 > len2)
res = 1;
else if (len1 < len2)
res = -1;
else if (hcount1 > hcount2)
res = 1;
else if (hcount2 > hcount1)
res = -1;
else
{
int count = hcount1 * 2;
int i;
for (i = 0; i < count; ++i)
if (HSE_ENDPOS(ent1[i]) != HSE_ENDPOS(ent2[i]) ||
HSE_ISNULL(ent1[i]) != HSE_ISNULL(ent2[i]))
break;
if (i < count)
{
if (HSE_ENDPOS(ent1[i]) < HSE_ENDPOS(ent2[i]))
res = -1;
else if (HSE_ENDPOS(ent1[i]) > HSE_ENDPOS(ent2[i]))
res = 1;
else if (HSE_ISNULL(ent1[i]))
res = 1;
else if (HSE_ISNULL(ent2[i]))
res = -1;
}
}
}
else
{
res = (res > 0) ? 1 : -1;
}
}
/*
* this is a btree support function; this is one of the few places where
* memory needs to be explicitly freed.
*/
PG_FREE_IF_COPY(hs1, 0);
PG_FREE_IF_COPY(hs2, 1);
PG_RETURN_INT32(res);
}
PG_FUNCTION_INFO_V1(hstore_eq);
Datum
hstore_eq(PG_FUNCTION_ARGS)
{
int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
PG_RETURN_BOOL(res == 0);
}
PG_FUNCTION_INFO_V1(hstore_ne);
Datum
hstore_ne(PG_FUNCTION_ARGS)
{
int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
PG_RETURN_BOOL(res != 0);
}
PG_FUNCTION_INFO_V1(hstore_gt);
Datum
hstore_gt(PG_FUNCTION_ARGS)
{
int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
PG_RETURN_BOOL(res > 0);
}
PG_FUNCTION_INFO_V1(hstore_ge);
Datum
hstore_ge(PG_FUNCTION_ARGS)
{
int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
PG_RETURN_BOOL(res >= 0);
}
PG_FUNCTION_INFO_V1(hstore_lt);
Datum
hstore_lt(PG_FUNCTION_ARGS)
{
int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
PG_RETURN_BOOL(res < 0);
}
PG_FUNCTION_INFO_V1(hstore_le);
Datum
hstore_le(PG_FUNCTION_ARGS)
{
int res = DatumGetInt32(DirectFunctionCall2(hstore_cmp,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
PG_RETURN_BOOL(res <= 0);
}
PG_FUNCTION_INFO_V1(hstore_hash);
Datum
hstore_hash(PG_FUNCTION_ARGS)
{
HStore *hs = PG_GETARG_HSTORE_P(0);
Datum hval = hash_any((unsigned char *) VARDATA(hs),
VARSIZE(hs) - VARHDRSZ);
/*
* this is the only place in the code that cares whether the overall
* varlena size exactly matches the true data size; this assertion should
* be maintained by all the other code, but we make it explicit here.
*/
Assert(VARSIZE(hs) ==
(HS_COUNT(hs) != 0 ?
CALCDATASIZE(HS_COUNT(hs),
HSE_ENDPOS(ARRPTR(hs)[2 * HS_COUNT(hs) - 1])) :
HSHRDSIZE));
PG_FREE_IF_COPY(hs, 0);
PG_RETURN_DATUM(hval);
}