mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-12 18:34:36 +08:00
a45adc747e
If a view references a foreign table, and the foreign table has a BEFORE INSERT trigger, then it's possible for a tuple inserted or updated through the view to be changed such that it violates the view's WITH CHECK OPTION constraint. Before this commit, postgres_fdw handled this case inconsistently. A RETURNING clause on the INSERT or UPDATE statement targeting the view would cause the finally-inserted tuple to be read back, and the WITH CHECK OPTION violation would throw an error. But without a RETURNING clause, postgres_fdw would not read the final tuple back, and WITH CHECK OPTION would not throw an error for the violation (or may throw an error when there is no real violation). AFTER ROW triggers on the foreign table had a similar effect as a RETURNING clause on the INSERT or UPDATE statement. To fix, this commit retrieves the attributes needed to enforce the WITH CHECK OPTION constraint along with the attributes needed for the RETURNING clause (if any) from the remote side. Thus, the WITH CHECK OPTION constraint is always evaluated against the final tuple after any triggers on the remote side. This fix may be considered inconsistent with CHECK constraints declared on foreign tables, which are not enforced locally at all (because the constraint is on a remote object). The discussion concluded that this difference is reasonable, because the WITH CHECK OPTION is a constraint on the local view (not any remote object); therefore it only makes sense to enforce its WITH CHECK OPTION constraint locally. Author: Etsuro Fujita Reviewed-by: Arthur Zakirov, Stephen Frost Discussion: https://www.postgresql.org/message-id/7eb58fab-fd3b-781b-ac33-f7cfec96021f%40lab.ntt.co.jp |
||
---|---|---|
.. | ||
adminpack | ||
amcheck | ||
auth_delay | ||
auto_explain | ||
bloom | ||
btree_gin | ||
btree_gist | ||
citext | ||
cube | ||
dblink | ||
dict_int | ||
dict_xsyn | ||
earthdistance | ||
file_fdw | ||
fuzzystrmatch | ||
hstore | ||
hstore_plperl | ||
hstore_plpython | ||
intagg | ||
intarray | ||
isn | ||
jsonb_plperl | ||
jsonb_plpython | ||
lo | ||
ltree | ||
ltree_plpython | ||
oid2name | ||
pageinspect | ||
passwordcheck | ||
pg_buffercache | ||
pg_freespacemap | ||
pg_prewarm | ||
pg_standby | ||
pg_stat_statements | ||
pg_trgm | ||
pg_visibility | ||
pgcrypto | ||
pgrowlocks | ||
pgstattuple | ||
postgres_fdw | ||
seg | ||
sepgsql | ||
spi | ||
sslinfo | ||
start-scripts | ||
tablefunc | ||
tcn | ||
test_decoding | ||
tsm_system_rows | ||
tsm_system_time | ||
unaccent | ||
uuid-ossp | ||
vacuumlo | ||
xml2 | ||
contrib-global.mk | ||
Makefile | ||
README |
The PostgreSQL contrib tree --------------------------- This subtree contains porting tools, analysis utilities, and plug-in features that are not part of the core PostgreSQL system, mainly because they address a limited audience or are too experimental to be part of the main source tree. This does not preclude their usefulness. User documentation for each module appears in the main SGML documentation. When building from the source distribution, these modules are not built automatically, unless you build the "world" target. You can also build and install them all by running "make all" and "make install" in this directory; or to build and install just one selected module, do the same in that module's subdirectory. Some directories supply new user-defined functions, operators, or types. To make use of one of these modules, after you have installed the code you need to register the new SQL objects in the database system by executing a CREATE EXTENSION command. In a fresh database, you can simply do CREATE EXTENSION module_name; See the PostgreSQL documentation for more information about this procedure.