mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-27 08:39:28 +08:00
ca3b37487b
Backpatch-through: 9.5
341 lines
9.3 KiB
C
341 lines
9.3 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* tsm_system_rows.c
|
|
* support routines for SYSTEM_ROWS tablesample method
|
|
*
|
|
* The desire here is to produce a random sample with a given number of rows
|
|
* (or the whole relation, if that is fewer rows). We use a block-sampling
|
|
* approach. To ensure that the whole relation will be visited if necessary,
|
|
* we start at a randomly chosen block and then advance with a stride that
|
|
* is randomly chosen but is relatively prime to the relation's nblocks.
|
|
*
|
|
* Because of the dependence on nblocks, this method cannot be repeatable
|
|
* across queries. (Even if the user hasn't explicitly changed the relation,
|
|
* maintenance activities such as autovacuum might change nblocks.) However,
|
|
* we can at least make it repeatable across scans, by determining the
|
|
* sampling pattern only once on the first scan. This means that rescans
|
|
* won't visit blocks added after the first scan, but that is fine since
|
|
* such blocks shouldn't contain any visible tuples anyway.
|
|
*
|
|
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* contrib/tsm_system_rows/tsm_system_rows.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/relscan.h"
|
|
#include "access/tsmapi.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "miscadmin.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "utils/sampling.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
PG_FUNCTION_INFO_V1(tsm_system_rows_handler);
|
|
|
|
|
|
/* Private state */
|
|
typedef struct
|
|
{
|
|
uint32 seed; /* random seed */
|
|
int64 ntuples; /* number of tuples to return */
|
|
OffsetNumber lt; /* last tuple returned from current block */
|
|
BlockNumber doneblocks; /* number of already-scanned blocks */
|
|
BlockNumber lb; /* last block visited */
|
|
/* these three values are not changed during a rescan: */
|
|
BlockNumber nblocks; /* number of blocks in relation */
|
|
BlockNumber firstblock; /* first block to sample from */
|
|
BlockNumber step; /* step size, or 0 if not set yet */
|
|
} SystemRowsSamplerData;
|
|
|
|
static void system_rows_samplescangetsamplesize(PlannerInfo *root,
|
|
RelOptInfo *baserel,
|
|
List *paramexprs,
|
|
BlockNumber *pages,
|
|
double *tuples);
|
|
static void system_rows_initsamplescan(SampleScanState *node,
|
|
int eflags);
|
|
static void system_rows_beginsamplescan(SampleScanState *node,
|
|
Datum *params,
|
|
int nparams,
|
|
uint32 seed);
|
|
static BlockNumber system_rows_nextsampleblock(SampleScanState *node, BlockNumber nblocks);
|
|
static OffsetNumber system_rows_nextsampletuple(SampleScanState *node,
|
|
BlockNumber blockno,
|
|
OffsetNumber maxoffset);
|
|
static uint32 random_relative_prime(uint32 n, SamplerRandomState randstate);
|
|
|
|
|
|
/*
|
|
* Create a TsmRoutine descriptor for the SYSTEM_ROWS method.
|
|
*/
|
|
Datum
|
|
tsm_system_rows_handler(PG_FUNCTION_ARGS)
|
|
{
|
|
TsmRoutine *tsm = makeNode(TsmRoutine);
|
|
|
|
tsm->parameterTypes = list_make1_oid(INT8OID);
|
|
|
|
/* See notes at head of file */
|
|
tsm->repeatable_across_queries = false;
|
|
tsm->repeatable_across_scans = true;
|
|
|
|
tsm->SampleScanGetSampleSize = system_rows_samplescangetsamplesize;
|
|
tsm->InitSampleScan = system_rows_initsamplescan;
|
|
tsm->BeginSampleScan = system_rows_beginsamplescan;
|
|
tsm->NextSampleBlock = system_rows_nextsampleblock;
|
|
tsm->NextSampleTuple = system_rows_nextsampletuple;
|
|
tsm->EndSampleScan = NULL;
|
|
|
|
PG_RETURN_POINTER(tsm);
|
|
}
|
|
|
|
/*
|
|
* Sample size estimation.
|
|
*/
|
|
static void
|
|
system_rows_samplescangetsamplesize(PlannerInfo *root,
|
|
RelOptInfo *baserel,
|
|
List *paramexprs,
|
|
BlockNumber *pages,
|
|
double *tuples)
|
|
{
|
|
Node *limitnode;
|
|
int64 ntuples;
|
|
double npages;
|
|
|
|
/* Try to extract an estimate for the limit rowcount */
|
|
limitnode = (Node *) linitial(paramexprs);
|
|
limitnode = estimate_expression_value(root, limitnode);
|
|
|
|
if (IsA(limitnode, Const) &&
|
|
!((Const *) limitnode)->constisnull)
|
|
{
|
|
ntuples = DatumGetInt64(((Const *) limitnode)->constvalue);
|
|
if (ntuples < 0)
|
|
{
|
|
/* Default ntuples if the value is bogus */
|
|
ntuples = 1000;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Default ntuples if we didn't obtain a non-null Const */
|
|
ntuples = 1000;
|
|
}
|
|
|
|
/* Clamp to the estimated relation size */
|
|
if (ntuples > baserel->tuples)
|
|
ntuples = (int64) baserel->tuples;
|
|
ntuples = clamp_row_est(ntuples);
|
|
|
|
if (baserel->tuples > 0 && baserel->pages > 0)
|
|
{
|
|
/* Estimate number of pages visited based on tuple density */
|
|
double density = baserel->tuples / (double) baserel->pages;
|
|
|
|
npages = ntuples / density;
|
|
}
|
|
else
|
|
{
|
|
/* For lack of data, assume one tuple per page */
|
|
npages = ntuples;
|
|
}
|
|
|
|
/* Clamp to sane value */
|
|
npages = clamp_row_est(Min((double) baserel->pages, npages));
|
|
|
|
*pages = npages;
|
|
*tuples = ntuples;
|
|
}
|
|
|
|
/*
|
|
* Initialize during executor setup.
|
|
*/
|
|
static void
|
|
system_rows_initsamplescan(SampleScanState *node, int eflags)
|
|
{
|
|
node->tsm_state = palloc0(sizeof(SystemRowsSamplerData));
|
|
/* Note the above leaves tsm_state->step equal to zero */
|
|
}
|
|
|
|
/*
|
|
* Examine parameters and prepare for a sample scan.
|
|
*/
|
|
static void
|
|
system_rows_beginsamplescan(SampleScanState *node,
|
|
Datum *params,
|
|
int nparams,
|
|
uint32 seed)
|
|
{
|
|
SystemRowsSamplerData *sampler = (SystemRowsSamplerData *) node->tsm_state;
|
|
int64 ntuples = DatumGetInt64(params[0]);
|
|
|
|
if (ntuples < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
|
|
errmsg("sample size must not be negative")));
|
|
|
|
sampler->seed = seed;
|
|
sampler->ntuples = ntuples;
|
|
sampler->lt = InvalidOffsetNumber;
|
|
sampler->doneblocks = 0;
|
|
/* lb will be initialized during first NextSampleBlock call */
|
|
/* we intentionally do not change nblocks/firstblock/step here */
|
|
|
|
/*
|
|
* We *must* use pagemode visibility checking in this module, so force
|
|
* that even though it's currently default.
|
|
*/
|
|
node->use_pagemode = true;
|
|
}
|
|
|
|
/*
|
|
* Select next block to sample.
|
|
*
|
|
* Uses linear probing algorithm for picking next block.
|
|
*/
|
|
static BlockNumber
|
|
system_rows_nextsampleblock(SampleScanState *node, BlockNumber nblocks)
|
|
{
|
|
SystemRowsSamplerData *sampler = (SystemRowsSamplerData *) node->tsm_state;
|
|
|
|
/* First call within scan? */
|
|
if (sampler->doneblocks == 0)
|
|
{
|
|
/* First scan within query? */
|
|
if (sampler->step == 0)
|
|
{
|
|
/* Initialize now that we have scan descriptor */
|
|
SamplerRandomState randstate;
|
|
|
|
/* If relation is empty, there's nothing to scan */
|
|
if (nblocks == 0)
|
|
return InvalidBlockNumber;
|
|
|
|
/* We only need an RNG during this setup step */
|
|
sampler_random_init_state(sampler->seed, randstate);
|
|
|
|
/* Compute nblocks/firstblock/step only once per query */
|
|
sampler->nblocks = nblocks;
|
|
|
|
/* Choose random starting block within the relation */
|
|
/* (Actually this is the predecessor of the first block visited) */
|
|
sampler->firstblock = sampler_random_fract(randstate) *
|
|
sampler->nblocks;
|
|
|
|
/* Find relative prime as step size for linear probing */
|
|
sampler->step = random_relative_prime(sampler->nblocks, randstate);
|
|
}
|
|
|
|
/* Reinitialize lb */
|
|
sampler->lb = sampler->firstblock;
|
|
}
|
|
|
|
/* If we've read all blocks or returned all needed tuples, we're done */
|
|
if (++sampler->doneblocks > sampler->nblocks ||
|
|
node->donetuples >= sampler->ntuples)
|
|
return InvalidBlockNumber;
|
|
|
|
/*
|
|
* It's probably impossible for scan->rs_nblocks to decrease between scans
|
|
* within a query; but just in case, loop until we select a block number
|
|
* less than scan->rs_nblocks. We don't care if scan->rs_nblocks has
|
|
* increased since the first scan.
|
|
*/
|
|
do
|
|
{
|
|
/* Advance lb, using uint64 arithmetic to forestall overflow */
|
|
sampler->lb = ((uint64) sampler->lb + sampler->step) % sampler->nblocks;
|
|
} while (sampler->lb >= nblocks);
|
|
|
|
return sampler->lb;
|
|
}
|
|
|
|
/*
|
|
* Select next sampled tuple in current block.
|
|
*
|
|
* In block sampling, we just want to sample all the tuples in each selected
|
|
* block.
|
|
*
|
|
* When we reach end of the block, return InvalidOffsetNumber which tells
|
|
* SampleScan to go to next block.
|
|
*/
|
|
static OffsetNumber
|
|
system_rows_nextsampletuple(SampleScanState *node,
|
|
BlockNumber blockno,
|
|
OffsetNumber maxoffset)
|
|
{
|
|
SystemRowsSamplerData *sampler = (SystemRowsSamplerData *) node->tsm_state;
|
|
OffsetNumber tupoffset = sampler->lt;
|
|
|
|
/* Quit if we've returned all needed tuples */
|
|
if (node->donetuples >= sampler->ntuples)
|
|
return InvalidOffsetNumber;
|
|
|
|
/* Advance to next possible offset on page */
|
|
if (tupoffset == InvalidOffsetNumber)
|
|
tupoffset = FirstOffsetNumber;
|
|
else
|
|
tupoffset++;
|
|
|
|
/* Done? */
|
|
if (tupoffset > maxoffset)
|
|
tupoffset = InvalidOffsetNumber;
|
|
|
|
sampler->lt = tupoffset;
|
|
|
|
return tupoffset;
|
|
}
|
|
|
|
/*
|
|
* Compute greatest common divisor of two uint32's.
|
|
*/
|
|
static uint32
|
|
gcd(uint32 a, uint32 b)
|
|
{
|
|
uint32 c;
|
|
|
|
while (a != 0)
|
|
{
|
|
c = a;
|
|
a = b % a;
|
|
b = c;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
* Pick a random value less than and relatively prime to n, if possible
|
|
* (else return 1).
|
|
*/
|
|
static uint32
|
|
random_relative_prime(uint32 n, SamplerRandomState randstate)
|
|
{
|
|
uint32 r;
|
|
|
|
/* Safety check to avoid infinite loop or zero result for small n. */
|
|
if (n <= 1)
|
|
return 1;
|
|
|
|
/*
|
|
* This should only take 2 or 3 iterations as the probability of 2 numbers
|
|
* being relatively prime is ~61%; but just in case, we'll include a
|
|
* CHECK_FOR_INTERRUPTS in the loop.
|
|
*/
|
|
do
|
|
{
|
|
CHECK_FOR_INTERRUPTS();
|
|
r = (uint32) (sampler_random_fract(randstate) * n);
|
|
} while (r == 0 || gcd(r, n) > 1);
|
|
|
|
return r;
|
|
}
|