postgresql/contrib/intarray/_int_gist.c
Peter Eisentraut e8d78581bb Revert "Convert *GetDatum() and DatumGet*() macros to inline functions"
This reverts commit 595836e99b.

It has problems when USE_FLOAT8_BYVAL is off.
2022-09-12 19:57:07 +02:00

631 lines
15 KiB
C

/*
* contrib/intarray/_int_gist.c
*/
#include "postgres.h"
#include <limits.h>
#include "_int.h"
#include "access/gist.h"
#include "access/reloptions.h"
#include "access/stratnum.h"
#define GETENTRY(vec,pos) ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))
/*
* Control the maximum sparseness of compressed keys.
*
* The upper safe bound for this limit is half the maximum allocatable array
* size. A lower bound would give more guarantees that pathological data
* wouldn't eat excessive CPU and memory, but at the expense of breaking
* possibly working (after a fashion) indexes.
*/
#define MAXNUMELTS (Min((MaxAllocSize / sizeof(Datum)),((MaxAllocSize - ARR_OVERHEAD_NONULLS(1)) / sizeof(int)))/2)
/* or: #define MAXNUMELTS 1000000 */
/*
** GiST support methods
*/
PG_FUNCTION_INFO_V1(g_int_consistent);
PG_FUNCTION_INFO_V1(g_int_compress);
PG_FUNCTION_INFO_V1(g_int_decompress);
PG_FUNCTION_INFO_V1(g_int_penalty);
PG_FUNCTION_INFO_V1(g_int_picksplit);
PG_FUNCTION_INFO_V1(g_int_union);
PG_FUNCTION_INFO_V1(g_int_same);
PG_FUNCTION_INFO_V1(g_int_options);
/*
** The GiST Consistent method for _intments
** Should return false if for all data items x below entry,
** the predicate x op query == false, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
Datum
g_int_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
ArrayType *query = PG_GETARG_ARRAYTYPE_P_COPY(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
bool retval;
/* this is exact except for RTSameStrategyNumber */
*recheck = (strategy == RTSameStrategyNumber);
if (strategy == BooleanSearchStrategy)
{
retval = execconsistent((QUERYTYPE *) query,
(ArrayType *) DatumGetPointer(entry->key),
GIST_LEAF(entry));
pfree(query);
PG_RETURN_BOOL(retval);
}
/* sort query for fast search, key is already sorted */
CHECKARRVALID(query);
PREPAREARR(query);
switch (strategy)
{
case RTOverlapStrategyNumber:
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTSameStrategyNumber:
if (GIST_LEAF(entry))
DirectFunctionCall3(g_int_same,
entry->key,
PointerGetDatum(query),
PointerGetDatum(&retval));
else
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
/*
* This code is unreachable as of intarray 1.4, because the <@
* operator has been removed from the opclass. We keep it for now
* to support older versions of the SQL definitions.
*/
if (GIST_LEAF(entry))
retval = inner_int_contains(query,
(ArrayType *) DatumGetPointer(entry->key));
else
{
/*
* Unfortunately, because empty arrays could be anywhere in
* the index, we must search the whole tree.
*/
retval = true;
}
break;
default:
retval = false;
}
pfree(query);
PG_RETURN_BOOL(retval);
}
Datum
g_int_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
int *size = (int *) PG_GETARG_POINTER(1);
int32 i,
*ptr;
ArrayType *res;
int totlen = 0;
for (i = 0; i < entryvec->n; i++)
{
ArrayType *ent = GETENTRY(entryvec, i);
CHECKARRVALID(ent);
totlen += ARRNELEMS(ent);
}
res = new_intArrayType(totlen);
ptr = ARRPTR(res);
for (i = 0; i < entryvec->n; i++)
{
ArrayType *ent = GETENTRY(entryvec, i);
int nel;
nel = ARRNELEMS(ent);
memcpy(ptr, ARRPTR(ent), nel * sizeof(int32));
ptr += nel;
}
QSORT(res, 1);
res = _int_unique(res);
*size = VARSIZE(res);
PG_RETURN_POINTER(res);
}
/*
** GiST Compress and Decompress methods
*/
Datum
g_int_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r;
int num_ranges = G_INT_GET_NUMRANGES();
int len,
lenr;
int *dr;
int i,
j,
cand;
int64 min;
if (entry->leafkey)
{
r = DatumGetArrayTypePCopy(entry->key);
CHECKARRVALID(r);
PREPAREARR(r);
if (ARRNELEMS(r) >= 2 * num_ranges)
elog(NOTICE, "input array is too big (%d maximum allowed, %d current), use gist__intbig_ops opclass instead",
2 * num_ranges - 1, ARRNELEMS(r));
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
/*
* leaf entries never compress one more time, only when entry->leafkey
* ==true, so now we work only with internal keys
*/
r = DatumGetArrayTypeP(entry->key);
CHECKARRVALID(r);
if (ARRISEMPTY(r))
{
if (r != (ArrayType *) DatumGetPointer(entry->key))
pfree(r);
PG_RETURN_POINTER(entry);
}
if ((len = ARRNELEMS(r)) >= 2 * num_ranges)
{ /* compress */
if (r == (ArrayType *) DatumGetPointer(entry->key))
r = DatumGetArrayTypePCopy(entry->key);
r = resize_intArrayType(r, 2 * (len));
dr = ARRPTR(r);
/*
* "len" at this point is the number of ranges we will construct.
* "lenr" is the number of ranges we must eventually remove by
* merging, we must be careful to remove no more than this number.
*/
lenr = len - num_ranges;
/*
* Initially assume we can merge consecutive ints into a range. but we
* must count every value removed and stop when lenr runs out
*/
for (j = i = len - 1; i > 0 && lenr > 0; i--, j--)
{
int r_end = dr[i];
int r_start = r_end;
while (i > 0 && lenr > 0 && dr[i - 1] == r_start - 1)
--r_start, --i, --lenr;
dr[2 * j] = r_start;
dr[2 * j + 1] = r_end;
}
/* just copy the rest, if any, as trivial ranges */
for (; i >= 0; i--, j--)
dr[2 * j] = dr[2 * j + 1] = dr[i];
if (++j)
{
/*
* shunt everything down to start at the right place
*/
memmove((void *) &dr[0], (void *) &dr[2 * j], 2 * (len - j) * sizeof(int32));
}
/*
* make "len" be number of array elements, not ranges
*/
len = 2 * (len - j);
cand = 1;
while (len > num_ranges * 2)
{
min = PG_INT64_MAX;
for (i = 2; i < len; i += 2)
if (min > ((int64) dr[i] - (int64) dr[i - 1]))
{
min = ((int64) dr[i] - (int64) dr[i - 1]);
cand = i;
}
memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int32));
len -= 2;
}
/*
* check sparseness of result
*/
lenr = internal_size(dr, len);
if (lenr < 0 || lenr > MAXNUMELTS)
ereport(ERROR,
(errmsg("data is too sparse, recreate index using gist__intbig_ops opclass instead")));
r = resize_intArrayType(r, len);
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
else
PG_RETURN_POINTER(entry);
}
Datum
g_int_decompress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r;
int num_ranges = G_INT_GET_NUMRANGES();
int *dr,
lenr;
ArrayType *in;
int lenin;
int *din;
int i,
j;
in = DatumGetArrayTypeP(entry->key);
CHECKARRVALID(in);
if (ARRISEMPTY(in))
{
if (in != (ArrayType *) DatumGetPointer(entry->key))
{
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(in),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
PG_RETURN_POINTER(entry);
}
lenin = ARRNELEMS(in);
if (lenin < 2 * num_ranges)
{ /* not compressed value */
if (in != (ArrayType *) DatumGetPointer(entry->key))
{
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(in),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
PG_RETURN_POINTER(entry);
}
din = ARRPTR(in);
lenr = internal_size(din, lenin);
if (lenr < 0 || lenr > MAXNUMELTS)
ereport(ERROR,
(errmsg("compressed array is too big, recreate index using gist__intbig_ops opclass instead")));
r = new_intArrayType(lenr);
dr = ARRPTR(r);
for (i = 0; i < lenin; i += 2)
for (j = din[i]; j <= din[i + 1]; j++)
if ((!i) || *(dr - 1) != j)
*dr++ = j;
if (in != (ArrayType *) DatumGetPointer(entry->key))
pfree(in);
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
/*
** The GiST Penalty method for _intments
*/
Datum
g_int_penalty(PG_FUNCTION_ARGS)
{
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *result = (float *) PG_GETARG_POINTER(2);
ArrayType *ud;
float tmp1,
tmp2;
ud = inner_int_union((ArrayType *) DatumGetPointer(origentry->key),
(ArrayType *) DatumGetPointer(newentry->key));
rt__int_size(ud, &tmp1);
rt__int_size((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
*result = tmp1 - tmp2;
pfree(ud);
PG_RETURN_POINTER(result);
}
Datum
g_int_same(PG_FUNCTION_ARGS)
{
ArrayType *a = PG_GETARG_ARRAYTYPE_P(0);
ArrayType *b = PG_GETARG_ARRAYTYPE_P(1);
bool *result = (bool *) PG_GETARG_POINTER(2);
int32 n = ARRNELEMS(a);
int32 *da,
*db;
CHECKARRVALID(a);
CHECKARRVALID(b);
if (n != ARRNELEMS(b))
{
*result = false;
PG_RETURN_POINTER(result);
}
*result = true;
da = ARRPTR(a);
db = ARRPTR(b);
while (n--)
{
if (*da++ != *db++)
{
*result = false;
break;
}
}
PG_RETURN_POINTER(result);
}
/*****************************************************************
** Common GiST Method
*****************************************************************/
typedef struct
{
OffsetNumber pos;
float cost;
} SPLITCOST;
static int
comparecost(const void *a, const void *b)
{
if (((const SPLITCOST *) a)->cost == ((const SPLITCOST *) b)->cost)
return 0;
else
return (((const SPLITCOST *) a)->cost > ((const SPLITCOST *) b)->cost) ? 1 : -1;
}
/*
** The GiST PickSplit method for _intments
** We use Guttman's poly time split algorithm
*/
Datum
g_int_picksplit(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
OffsetNumber i,
j;
ArrayType *datum_alpha,
*datum_beta;
ArrayType *datum_l,
*datum_r;
ArrayType *union_d,
*union_dl,
*union_dr;
ArrayType *inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
SPLITCOST *costvector;
#ifdef GIST_DEBUG
elog(DEBUG3, "--------picksplit %d", entryvec->n);
#endif
maxoff = entryvec->n - 2;
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
datum_alpha = GETENTRY(entryvec, i);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
datum_beta = GETENTRY(entryvec, j);
/* compute the wasted space by unioning these guys */
/* size_waste = size_union - size_inter; */
union_d = inner_int_union(datum_alpha, datum_beta);
rt__int_size(union_d, &size_union);
inter_d = inner_int_inter(datum_alpha, datum_beta);
rt__int_size(inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
pfree(inter_d);
/*
* are these a more promising split that what we've already seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
if (seed_1 == 0 || seed_2 == 0)
{
seed_1 = 1;
seed_2 = 2;
}
datum_alpha = GETENTRY(entryvec, seed_1);
datum_l = copy_intArrayType(datum_alpha);
rt__int_size(datum_l, &size_l);
datum_beta = GETENTRY(entryvec, seed_2);
datum_r = copy_intArrayType(datum_beta);
rt__int_size(datum_r, &size_r);
maxoff = OffsetNumberNext(maxoff);
/*
* sort entries
*/
costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
costvector[i - 1].pos = i;
datum_alpha = GETENTRY(entryvec, i);
union_d = inner_int_union(datum_l, datum_alpha);
rt__int_size(union_d, &size_alpha);
pfree(union_d);
union_d = inner_int_union(datum_r, datum_alpha);
rt__int_size(union_d, &size_beta);
pfree(union_d);
costvector[i - 1].cost = Abs((size_alpha - size_l) - (size_beta - size_r));
}
qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);
/*
* Now split up the regions between the two seeds. An important property
* of this split algorithm is that the split vector v has the indices of
* items to be split in order in its left and right vectors. We exploit
* this property by doing a merge in the code that actually splits the
* page.
*
* For efficiency, we also place the new index tuple in this loop. This is
* handled at the very end, when we have placed all the existing tuples
* and i == maxoff + 1.
*/
for (j = 0; j < maxoff; j++)
{
i = costvector[j].pos;
/*
* If we've already decided where to place this item, just put it on
* the right list. Otherwise, we need to figure out which page needs
* the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
datum_alpha = GETENTRY(entryvec, i);
union_dl = inner_int_union(datum_l, datum_alpha);
union_dr = inner_int_union(datum_r, datum_alpha);
rt__int_size(union_dl, &size_alpha);
rt__int_size(union_dr, &size_beta);
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, 0.01))
{
pfree(datum_l);
pfree(union_dr);
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(datum_r);
pfree(union_dl);
datum_r = union_dr;
size_r = size_beta;
*right++ = i;
v->spl_nright++;
}
}
pfree(costvector);
*right = *left = FirstOffsetNumber;
v->spl_ldatum = PointerGetDatum(datum_l);
v->spl_rdatum = PointerGetDatum(datum_r);
PG_RETURN_POINTER(v);
}
Datum
g_int_options(PG_FUNCTION_ARGS)
{
local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
init_local_reloptions(relopts, sizeof(GISTIntArrayOptions));
add_local_int_reloption(relopts, "numranges",
"number of ranges for compression",
G_INT_NUMRANGES_DEFAULT, 1, G_INT_NUMRANGES_MAX,
offsetof(GISTIntArrayOptions, num_ranges));
PG_RETURN_VOID();
}