mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-24 18:55:04 +08:00
7559d8ebfa
Backpatch-through: update all files in master, backpatch legal files through 9.4
354 lines
9.7 KiB
C
354 lines
9.7 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* tsm_system_time.c
|
|
* support routines for SYSTEM_TIME tablesample method
|
|
*
|
|
* The desire here is to produce a random sample with as many rows as possible
|
|
* in no more than the specified amount of time. We use a block-sampling
|
|
* approach. To ensure that the whole relation will be visited if necessary,
|
|
* we start at a randomly chosen block and then advance with a stride that
|
|
* is randomly chosen but is relatively prime to the relation's nblocks.
|
|
*
|
|
* Because of the time dependence, this method is necessarily unrepeatable.
|
|
* However, we do what we can to reduce surprising behavior by selecting
|
|
* the sampling pattern just once per query, much as in tsm_system_rows.
|
|
*
|
|
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* contrib/tsm_system_time/tsm_system_time.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "access/relscan.h"
|
|
#include "access/tsmapi.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "miscadmin.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "utils/sampling.h"
|
|
#include "utils/spccache.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
PG_FUNCTION_INFO_V1(tsm_system_time_handler);
|
|
|
|
|
|
/* Private state */
|
|
typedef struct
|
|
{
|
|
uint32 seed; /* random seed */
|
|
double millis; /* time limit for sampling */
|
|
instr_time start_time; /* scan start time */
|
|
OffsetNumber lt; /* last tuple returned from current block */
|
|
BlockNumber doneblocks; /* number of already-scanned blocks */
|
|
BlockNumber lb; /* last block visited */
|
|
/* these three values are not changed during a rescan: */
|
|
BlockNumber nblocks; /* number of blocks in relation */
|
|
BlockNumber firstblock; /* first block to sample from */
|
|
BlockNumber step; /* step size, or 0 if not set yet */
|
|
} SystemTimeSamplerData;
|
|
|
|
static void system_time_samplescangetsamplesize(PlannerInfo *root,
|
|
RelOptInfo *baserel,
|
|
List *paramexprs,
|
|
BlockNumber *pages,
|
|
double *tuples);
|
|
static void system_time_initsamplescan(SampleScanState *node,
|
|
int eflags);
|
|
static void system_time_beginsamplescan(SampleScanState *node,
|
|
Datum *params,
|
|
int nparams,
|
|
uint32 seed);
|
|
static BlockNumber system_time_nextsampleblock(SampleScanState *node, BlockNumber nblocks);
|
|
static OffsetNumber system_time_nextsampletuple(SampleScanState *node,
|
|
BlockNumber blockno,
|
|
OffsetNumber maxoffset);
|
|
static uint32 random_relative_prime(uint32 n, SamplerRandomState randstate);
|
|
|
|
|
|
/*
|
|
* Create a TsmRoutine descriptor for the SYSTEM_TIME method.
|
|
*/
|
|
Datum
|
|
tsm_system_time_handler(PG_FUNCTION_ARGS)
|
|
{
|
|
TsmRoutine *tsm = makeNode(TsmRoutine);
|
|
|
|
tsm->parameterTypes = list_make1_oid(FLOAT8OID);
|
|
|
|
/* See notes at head of file */
|
|
tsm->repeatable_across_queries = false;
|
|
tsm->repeatable_across_scans = false;
|
|
|
|
tsm->SampleScanGetSampleSize = system_time_samplescangetsamplesize;
|
|
tsm->InitSampleScan = system_time_initsamplescan;
|
|
tsm->BeginSampleScan = system_time_beginsamplescan;
|
|
tsm->NextSampleBlock = system_time_nextsampleblock;
|
|
tsm->NextSampleTuple = system_time_nextsampletuple;
|
|
tsm->EndSampleScan = NULL;
|
|
|
|
PG_RETURN_POINTER(tsm);
|
|
}
|
|
|
|
/*
|
|
* Sample size estimation.
|
|
*/
|
|
static void
|
|
system_time_samplescangetsamplesize(PlannerInfo *root,
|
|
RelOptInfo *baserel,
|
|
List *paramexprs,
|
|
BlockNumber *pages,
|
|
double *tuples)
|
|
{
|
|
Node *limitnode;
|
|
double millis;
|
|
double spc_random_page_cost;
|
|
double npages;
|
|
double ntuples;
|
|
|
|
/* Try to extract an estimate for the limit time spec */
|
|
limitnode = (Node *) linitial(paramexprs);
|
|
limitnode = estimate_expression_value(root, limitnode);
|
|
|
|
if (IsA(limitnode, Const) &&
|
|
!((Const *) limitnode)->constisnull)
|
|
{
|
|
millis = DatumGetFloat8(((Const *) limitnode)->constvalue);
|
|
if (millis < 0 || isnan(millis))
|
|
{
|
|
/* Default millis if the value is bogus */
|
|
millis = 1000;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Default millis if we didn't obtain a non-null Const */
|
|
millis = 1000;
|
|
}
|
|
|
|
/* Get the planner's idea of cost per page read */
|
|
get_tablespace_page_costs(baserel->reltablespace,
|
|
&spc_random_page_cost,
|
|
NULL);
|
|
|
|
/*
|
|
* Estimate the number of pages we can read by assuming that the cost
|
|
* figure is expressed in milliseconds. This is completely, unmistakably
|
|
* bogus, but we have to do something to produce an estimate and there's
|
|
* no better answer.
|
|
*/
|
|
if (spc_random_page_cost > 0)
|
|
npages = millis / spc_random_page_cost;
|
|
else
|
|
npages = millis; /* even more bogus, but whatcha gonna do? */
|
|
|
|
/* Clamp to sane value */
|
|
npages = clamp_row_est(Min((double) baserel->pages, npages));
|
|
|
|
if (baserel->tuples > 0 && baserel->pages > 0)
|
|
{
|
|
/* Estimate number of tuples returned based on tuple density */
|
|
double density = baserel->tuples / (double) baserel->pages;
|
|
|
|
ntuples = npages * density;
|
|
}
|
|
else
|
|
{
|
|
/* For lack of data, assume one tuple per page */
|
|
ntuples = npages;
|
|
}
|
|
|
|
/* Clamp to the estimated relation size */
|
|
ntuples = clamp_row_est(Min(baserel->tuples, ntuples));
|
|
|
|
*pages = npages;
|
|
*tuples = ntuples;
|
|
}
|
|
|
|
/*
|
|
* Initialize during executor setup.
|
|
*/
|
|
static void
|
|
system_time_initsamplescan(SampleScanState *node, int eflags)
|
|
{
|
|
node->tsm_state = palloc0(sizeof(SystemTimeSamplerData));
|
|
/* Note the above leaves tsm_state->step equal to zero */
|
|
}
|
|
|
|
/*
|
|
* Examine parameters and prepare for a sample scan.
|
|
*/
|
|
static void
|
|
system_time_beginsamplescan(SampleScanState *node,
|
|
Datum *params,
|
|
int nparams,
|
|
uint32 seed)
|
|
{
|
|
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
|
|
double millis = DatumGetFloat8(params[0]);
|
|
|
|
if (millis < 0 || isnan(millis))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
|
|
errmsg("sample collection time must not be negative")));
|
|
|
|
sampler->seed = seed;
|
|
sampler->millis = millis;
|
|
sampler->lt = InvalidOffsetNumber;
|
|
sampler->doneblocks = 0;
|
|
/* start_time, lb will be initialized during first NextSampleBlock call */
|
|
/* we intentionally do not change nblocks/firstblock/step here */
|
|
}
|
|
|
|
/*
|
|
* Select next block to sample.
|
|
*
|
|
* Uses linear probing algorithm for picking next block.
|
|
*/
|
|
static BlockNumber
|
|
system_time_nextsampleblock(SampleScanState *node, BlockNumber nblocks)
|
|
{
|
|
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
|
|
instr_time cur_time;
|
|
|
|
/* First call within scan? */
|
|
if (sampler->doneblocks == 0)
|
|
{
|
|
/* First scan within query? */
|
|
if (sampler->step == 0)
|
|
{
|
|
/* Initialize now that we have scan descriptor */
|
|
SamplerRandomState randstate;
|
|
|
|
/* If relation is empty, there's nothing to scan */
|
|
if (nblocks == 0)
|
|
return InvalidBlockNumber;
|
|
|
|
/* We only need an RNG during this setup step */
|
|
sampler_random_init_state(sampler->seed, randstate);
|
|
|
|
/* Compute nblocks/firstblock/step only once per query */
|
|
sampler->nblocks = nblocks;
|
|
|
|
/* Choose random starting block within the relation */
|
|
/* (Actually this is the predecessor of the first block visited) */
|
|
sampler->firstblock = sampler_random_fract(randstate) *
|
|
sampler->nblocks;
|
|
|
|
/* Find relative prime as step size for linear probing */
|
|
sampler->step = random_relative_prime(sampler->nblocks, randstate);
|
|
}
|
|
|
|
/* Reinitialize lb and start_time */
|
|
sampler->lb = sampler->firstblock;
|
|
INSTR_TIME_SET_CURRENT(sampler->start_time);
|
|
}
|
|
|
|
/* If we've read all blocks in relation, we're done */
|
|
if (++sampler->doneblocks > sampler->nblocks)
|
|
return InvalidBlockNumber;
|
|
|
|
/* If we've used up all the allotted time, we're done */
|
|
INSTR_TIME_SET_CURRENT(cur_time);
|
|
INSTR_TIME_SUBTRACT(cur_time, sampler->start_time);
|
|
if (INSTR_TIME_GET_MILLISEC(cur_time) >= sampler->millis)
|
|
return InvalidBlockNumber;
|
|
|
|
/*
|
|
* It's probably impossible for scan->rs_nblocks to decrease between scans
|
|
* within a query; but just in case, loop until we select a block number
|
|
* less than scan->rs_nblocks. We don't care if scan->rs_nblocks has
|
|
* increased since the first scan.
|
|
*/
|
|
do
|
|
{
|
|
/* Advance lb, using uint64 arithmetic to forestall overflow */
|
|
sampler->lb = ((uint64) sampler->lb + sampler->step) % sampler->nblocks;
|
|
} while (sampler->lb >= nblocks);
|
|
|
|
return sampler->lb;
|
|
}
|
|
|
|
/*
|
|
* Select next sampled tuple in current block.
|
|
*
|
|
* In block sampling, we just want to sample all the tuples in each selected
|
|
* block.
|
|
*
|
|
* When we reach end of the block, return InvalidOffsetNumber which tells
|
|
* SampleScan to go to next block.
|
|
*/
|
|
static OffsetNumber
|
|
system_time_nextsampletuple(SampleScanState *node,
|
|
BlockNumber blockno,
|
|
OffsetNumber maxoffset)
|
|
{
|
|
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
|
|
OffsetNumber tupoffset = sampler->lt;
|
|
|
|
/* Advance to next possible offset on page */
|
|
if (tupoffset == InvalidOffsetNumber)
|
|
tupoffset = FirstOffsetNumber;
|
|
else
|
|
tupoffset++;
|
|
|
|
/* Done? */
|
|
if (tupoffset > maxoffset)
|
|
tupoffset = InvalidOffsetNumber;
|
|
|
|
sampler->lt = tupoffset;
|
|
|
|
return tupoffset;
|
|
}
|
|
|
|
/*
|
|
* Compute greatest common divisor of two uint32's.
|
|
*/
|
|
static uint32
|
|
gcd(uint32 a, uint32 b)
|
|
{
|
|
uint32 c;
|
|
|
|
while (a != 0)
|
|
{
|
|
c = a;
|
|
a = b % a;
|
|
b = c;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
* Pick a random value less than and relatively prime to n, if possible
|
|
* (else return 1).
|
|
*/
|
|
static uint32
|
|
random_relative_prime(uint32 n, SamplerRandomState randstate)
|
|
{
|
|
uint32 r;
|
|
|
|
/* Safety check to avoid infinite loop or zero result for small n. */
|
|
if (n <= 1)
|
|
return 1;
|
|
|
|
/*
|
|
* This should only take 2 or 3 iterations as the probability of 2 numbers
|
|
* being relatively prime is ~61%; but just in case, we'll include a
|
|
* CHECK_FOR_INTERRUPTS in the loop.
|
|
*/
|
|
do
|
|
{
|
|
CHECK_FOR_INTERRUPTS();
|
|
r = (uint32) (sampler_random_fract(randstate) * n);
|
|
} while (r == 0 || gcd(r, n) > 1);
|
|
|
|
return r;
|
|
}
|