mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-06 15:24:56 +08:00
d9d873bac6
This is similar to 7d25958
, and this commit takes care of all the
remaining inconsistencies between the initial value used in the C
variable associated to a GUC and its default value stored in the GUC
tables (as of pg_settings.boot_val).
Some of the initial values of the GUCs updated rely on a compile-time
default. These are refactored so as the GUC table and its C declaration
use the same values. This makes everything consistent with other
places, backend_flush_after, bgwriter_flush_after, port,
checkpoint_flush_after doing so already, for example.
Extracted from a larger patch by Peter Smith. The spots updated in the
modules are from me.
Author: Peter Smith, Michael Paquier
Reviewed-by: Nathan Bossart, Tom Lane, Justin Pryzby
Discussion: https://postgr.es/m/CAHut+PtHE0XSfjjRQ6D4v7+dqzCw=d+1a64ujra4EX8aoc_Z+w@mail.gmail.com
1324 lines
29 KiB
C
1324 lines
29 KiB
C
/*
|
|
* contrib/pg_trgm/trgm_op.c
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "lib/qunique.h"
|
|
#include "miscadmin.h"
|
|
#include "trgm.h"
|
|
#include "tsearch/ts_locale.h"
|
|
#include "utils/guc.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/pg_crc.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
/* GUC variables */
|
|
double similarity_threshold = 0.3f;
|
|
double word_similarity_threshold = 0.6f;
|
|
double strict_word_similarity_threshold = 0.5f;
|
|
|
|
PG_FUNCTION_INFO_V1(set_limit);
|
|
PG_FUNCTION_INFO_V1(show_limit);
|
|
PG_FUNCTION_INFO_V1(show_trgm);
|
|
PG_FUNCTION_INFO_V1(similarity);
|
|
PG_FUNCTION_INFO_V1(word_similarity);
|
|
PG_FUNCTION_INFO_V1(strict_word_similarity);
|
|
PG_FUNCTION_INFO_V1(similarity_dist);
|
|
PG_FUNCTION_INFO_V1(similarity_op);
|
|
PG_FUNCTION_INFO_V1(word_similarity_op);
|
|
PG_FUNCTION_INFO_V1(word_similarity_commutator_op);
|
|
PG_FUNCTION_INFO_V1(word_similarity_dist_op);
|
|
PG_FUNCTION_INFO_V1(word_similarity_dist_commutator_op);
|
|
PG_FUNCTION_INFO_V1(strict_word_similarity_op);
|
|
PG_FUNCTION_INFO_V1(strict_word_similarity_commutator_op);
|
|
PG_FUNCTION_INFO_V1(strict_word_similarity_dist_op);
|
|
PG_FUNCTION_INFO_V1(strict_word_similarity_dist_commutator_op);
|
|
|
|
/* Trigram with position */
|
|
typedef struct
|
|
{
|
|
trgm trg;
|
|
int index;
|
|
} pos_trgm;
|
|
|
|
/* Trigram bound type */
|
|
typedef uint8 TrgmBound;
|
|
#define TRGM_BOUND_LEFT 0x01 /* trigram is left bound of word */
|
|
#define TRGM_BOUND_RIGHT 0x02 /* trigram is right bound of word */
|
|
|
|
/* Word similarity flags */
|
|
#define WORD_SIMILARITY_CHECK_ONLY 0x01 /* only check existence of similar
|
|
* search pattern in text */
|
|
#define WORD_SIMILARITY_STRICT 0x02 /* force bounds of extent to match
|
|
* word bounds */
|
|
|
|
/*
|
|
* Module load callback
|
|
*/
|
|
void
|
|
_PG_init(void)
|
|
{
|
|
/* Define custom GUC variables. */
|
|
DefineCustomRealVariable("pg_trgm.similarity_threshold",
|
|
"Sets the threshold used by the % operator.",
|
|
"Valid range is 0.0 .. 1.0.",
|
|
&similarity_threshold,
|
|
0.3f,
|
|
0.0,
|
|
1.0,
|
|
PGC_USERSET,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
DefineCustomRealVariable("pg_trgm.word_similarity_threshold",
|
|
"Sets the threshold used by the <% operator.",
|
|
"Valid range is 0.0 .. 1.0.",
|
|
&word_similarity_threshold,
|
|
0.6f,
|
|
0.0,
|
|
1.0,
|
|
PGC_USERSET,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
DefineCustomRealVariable("pg_trgm.strict_word_similarity_threshold",
|
|
"Sets the threshold used by the <<% operator.",
|
|
"Valid range is 0.0 .. 1.0.",
|
|
&strict_word_similarity_threshold,
|
|
0.5f,
|
|
0.0,
|
|
1.0,
|
|
PGC_USERSET,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
|
|
MarkGUCPrefixReserved("pg_trgm");
|
|
}
|
|
|
|
/*
|
|
* Deprecated function.
|
|
* Use "pg_trgm.similarity_threshold" GUC variable instead of this function.
|
|
*/
|
|
Datum
|
|
set_limit(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 nlimit = PG_GETARG_FLOAT4(0);
|
|
char *nlimit_str;
|
|
Oid func_out_oid;
|
|
bool is_varlena;
|
|
|
|
getTypeOutputInfo(FLOAT4OID, &func_out_oid, &is_varlena);
|
|
|
|
nlimit_str = OidOutputFunctionCall(func_out_oid, Float4GetDatum(nlimit));
|
|
|
|
SetConfigOption("pg_trgm.similarity_threshold", nlimit_str,
|
|
PGC_USERSET, PGC_S_SESSION);
|
|
|
|
PG_RETURN_FLOAT4(similarity_threshold);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get similarity threshold for given index scan strategy number.
|
|
*/
|
|
double
|
|
index_strategy_get_limit(StrategyNumber strategy)
|
|
{
|
|
switch (strategy)
|
|
{
|
|
case SimilarityStrategyNumber:
|
|
return similarity_threshold;
|
|
case WordSimilarityStrategyNumber:
|
|
return word_similarity_threshold;
|
|
case StrictWordSimilarityStrategyNumber:
|
|
return strict_word_similarity_threshold;
|
|
default:
|
|
elog(ERROR, "unrecognized strategy number: %d", strategy);
|
|
break;
|
|
}
|
|
|
|
return 0.0; /* keep compiler quiet */
|
|
}
|
|
|
|
/*
|
|
* Deprecated function.
|
|
* Use "pg_trgm.similarity_threshold" GUC variable instead of this function.
|
|
*/
|
|
Datum
|
|
show_limit(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT4(similarity_threshold);
|
|
}
|
|
|
|
static int
|
|
comp_trgm(const void *a, const void *b)
|
|
{
|
|
return CMPTRGM(a, b);
|
|
}
|
|
|
|
/*
|
|
* Finds first word in string, returns pointer to the word,
|
|
* endword points to the character after word
|
|
*/
|
|
static char *
|
|
find_word(char *str, int lenstr, char **endword, int *charlen)
|
|
{
|
|
char *beginword = str;
|
|
|
|
while (beginword - str < lenstr && !ISWORDCHR(beginword))
|
|
beginword += pg_mblen(beginword);
|
|
|
|
if (beginword - str >= lenstr)
|
|
return NULL;
|
|
|
|
*endword = beginword;
|
|
*charlen = 0;
|
|
while (*endword - str < lenstr && ISWORDCHR(*endword))
|
|
{
|
|
*endword += pg_mblen(*endword);
|
|
(*charlen)++;
|
|
}
|
|
|
|
return beginword;
|
|
}
|
|
|
|
/*
|
|
* Reduce a trigram (three possibly multi-byte characters) to a trgm,
|
|
* which is always exactly three bytes. If we have three single-byte
|
|
* characters, we just use them as-is; otherwise we form a hash value.
|
|
*/
|
|
void
|
|
compact_trigram(trgm *tptr, char *str, int bytelen)
|
|
{
|
|
if (bytelen == 3)
|
|
{
|
|
CPTRGM(tptr, str);
|
|
}
|
|
else
|
|
{
|
|
pg_crc32 crc;
|
|
|
|
INIT_LEGACY_CRC32(crc);
|
|
COMP_LEGACY_CRC32(crc, str, bytelen);
|
|
FIN_LEGACY_CRC32(crc);
|
|
|
|
/*
|
|
* use only 3 upper bytes from crc, hope, it's good enough hashing
|
|
*/
|
|
CPTRGM(tptr, &crc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adds trigrams from words (already padded).
|
|
*/
|
|
static trgm *
|
|
make_trigrams(trgm *tptr, char *str, int bytelen, int charlen)
|
|
{
|
|
char *ptr = str;
|
|
|
|
if (charlen < 3)
|
|
return tptr;
|
|
|
|
if (bytelen > charlen)
|
|
{
|
|
/* Find multibyte character boundaries and apply compact_trigram */
|
|
int lenfirst = pg_mblen(str),
|
|
lenmiddle = pg_mblen(str + lenfirst),
|
|
lenlast = pg_mblen(str + lenfirst + lenmiddle);
|
|
|
|
while ((ptr - str) + lenfirst + lenmiddle + lenlast <= bytelen)
|
|
{
|
|
compact_trigram(tptr, ptr, lenfirst + lenmiddle + lenlast);
|
|
|
|
ptr += lenfirst;
|
|
tptr++;
|
|
|
|
lenfirst = lenmiddle;
|
|
lenmiddle = lenlast;
|
|
lenlast = pg_mblen(ptr + lenfirst + lenmiddle);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Fast path when there are no multibyte characters */
|
|
Assert(bytelen == charlen);
|
|
|
|
while (ptr - str < bytelen - 2 /* number of trigrams = strlen - 2 */ )
|
|
{
|
|
CPTRGM(tptr, ptr);
|
|
ptr++;
|
|
tptr++;
|
|
}
|
|
}
|
|
|
|
return tptr;
|
|
}
|
|
|
|
/*
|
|
* Make array of trigrams without sorting and removing duplicate items.
|
|
*
|
|
* trg: where to return the array of trigrams.
|
|
* str: source string, of length slen bytes.
|
|
* bounds: where to return bounds of trigrams (if needed).
|
|
*
|
|
* Returns length of the generated array.
|
|
*/
|
|
static int
|
|
generate_trgm_only(trgm *trg, char *str, int slen, TrgmBound *bounds)
|
|
{
|
|
trgm *tptr;
|
|
char *buf;
|
|
int charlen,
|
|
bytelen;
|
|
char *bword,
|
|
*eword;
|
|
|
|
if (slen + LPADDING + RPADDING < 3 || slen == 0)
|
|
return 0;
|
|
|
|
tptr = trg;
|
|
|
|
/* Allocate a buffer for case-folded, blank-padded words */
|
|
buf = (char *) palloc(slen * pg_database_encoding_max_length() + 4);
|
|
|
|
if (LPADDING > 0)
|
|
{
|
|
*buf = ' ';
|
|
if (LPADDING > 1)
|
|
*(buf + 1) = ' ';
|
|
}
|
|
|
|
eword = str;
|
|
while ((bword = find_word(eword, slen - (eword - str), &eword, &charlen)) != NULL)
|
|
{
|
|
#ifdef IGNORECASE
|
|
bword = lowerstr_with_len(bword, eword - bword);
|
|
bytelen = strlen(bword);
|
|
#else
|
|
bytelen = eword - bword;
|
|
#endif
|
|
|
|
memcpy(buf + LPADDING, bword, bytelen);
|
|
|
|
#ifdef IGNORECASE
|
|
pfree(bword);
|
|
#endif
|
|
|
|
buf[LPADDING + bytelen] = ' ';
|
|
buf[LPADDING + bytelen + 1] = ' ';
|
|
|
|
/* Calculate trigrams marking their bounds if needed */
|
|
if (bounds)
|
|
bounds[tptr - trg] |= TRGM_BOUND_LEFT;
|
|
tptr = make_trigrams(tptr, buf, bytelen + LPADDING + RPADDING,
|
|
charlen + LPADDING + RPADDING);
|
|
if (bounds)
|
|
bounds[tptr - trg - 1] |= TRGM_BOUND_RIGHT;
|
|
}
|
|
|
|
pfree(buf);
|
|
|
|
return tptr - trg;
|
|
}
|
|
|
|
/*
|
|
* Guard against possible overflow in the palloc requests below. (We
|
|
* don't worry about the additive constants, since palloc can detect
|
|
* requests that are a little above MaxAllocSize --- we just need to
|
|
* prevent integer overflow in the multiplications.)
|
|
*/
|
|
static void
|
|
protect_out_of_mem(int slen)
|
|
{
|
|
if ((Size) (slen / 2) >= (MaxAllocSize / (sizeof(trgm) * 3)) ||
|
|
(Size) slen >= (MaxAllocSize / pg_database_encoding_max_length()))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
|
|
errmsg("out of memory")));
|
|
}
|
|
|
|
/*
|
|
* Make array of trigrams with sorting and removing duplicate items.
|
|
*
|
|
* str: source string, of length slen bytes.
|
|
*
|
|
* Returns the sorted array of unique trigrams.
|
|
*/
|
|
TRGM *
|
|
generate_trgm(char *str, int slen)
|
|
{
|
|
TRGM *trg;
|
|
int len;
|
|
|
|
protect_out_of_mem(slen);
|
|
|
|
trg = (TRGM *) palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) * 3);
|
|
trg->flag = ARRKEY;
|
|
|
|
len = generate_trgm_only(GETARR(trg), str, slen, NULL);
|
|
SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
|
|
|
|
if (len == 0)
|
|
return trg;
|
|
|
|
/*
|
|
* Make trigrams unique.
|
|
*/
|
|
if (len > 1)
|
|
{
|
|
qsort((void *) GETARR(trg), len, sizeof(trgm), comp_trgm);
|
|
len = qunique(GETARR(trg), len, sizeof(trgm), comp_trgm);
|
|
}
|
|
|
|
SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
|
|
|
|
return trg;
|
|
}
|
|
|
|
/*
|
|
* Make array of positional trigrams from two trigram arrays trg1 and trg2.
|
|
*
|
|
* trg1: trigram array of search pattern, of length len1. trg1 is required
|
|
* word which positions don't matter and replaced with -1.
|
|
* trg2: trigram array of text, of length len2. trg2 is haystack where we
|
|
* search and have to store its positions.
|
|
*
|
|
* Returns concatenated trigram array.
|
|
*/
|
|
static pos_trgm *
|
|
make_positional_trgm(trgm *trg1, int len1, trgm *trg2, int len2)
|
|
{
|
|
pos_trgm *result;
|
|
int i,
|
|
len = len1 + len2;
|
|
|
|
result = (pos_trgm *) palloc(sizeof(pos_trgm) * len);
|
|
|
|
for (i = 0; i < len1; i++)
|
|
{
|
|
memcpy(&result[i].trg, &trg1[i], sizeof(trgm));
|
|
result[i].index = -1;
|
|
}
|
|
|
|
for (i = 0; i < len2; i++)
|
|
{
|
|
memcpy(&result[i + len1].trg, &trg2[i], sizeof(trgm));
|
|
result[i + len1].index = i;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Compare position trigrams: compare trigrams first and position second.
|
|
*/
|
|
static int
|
|
comp_ptrgm(const void *v1, const void *v2)
|
|
{
|
|
const pos_trgm *p1 = (const pos_trgm *) v1;
|
|
const pos_trgm *p2 = (const pos_trgm *) v2;
|
|
int cmp;
|
|
|
|
cmp = CMPTRGM(p1->trg, p2->trg);
|
|
if (cmp != 0)
|
|
return cmp;
|
|
|
|
if (p1->index < p2->index)
|
|
return -1;
|
|
else if (p1->index == p2->index)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Iterative search function which calculates maximum similarity with word in
|
|
* the string. Maximum similarity is only calculated only if the flag
|
|
* WORD_SIMILARITY_CHECK_ONLY isn't set.
|
|
*
|
|
* trg2indexes: array which stores indexes of the array "found".
|
|
* found: array which stores true of false values.
|
|
* ulen1: count of unique trigrams of array "trg1".
|
|
* len2: length of array "trg2" and array "trg2indexes".
|
|
* len: length of the array "found".
|
|
* flags: set of boolean flags parameterizing similarity calculation.
|
|
* bounds: whether each trigram is left/right bound of word.
|
|
*
|
|
* Returns word similarity.
|
|
*/
|
|
static float4
|
|
iterate_word_similarity(int *trg2indexes,
|
|
bool *found,
|
|
int ulen1,
|
|
int len2,
|
|
int len,
|
|
uint8 flags,
|
|
TrgmBound *bounds)
|
|
{
|
|
int *lastpos,
|
|
i,
|
|
ulen2 = 0,
|
|
count = 0,
|
|
upper = -1,
|
|
lower;
|
|
float4 smlr_cur,
|
|
smlr_max = 0.0f;
|
|
double threshold;
|
|
|
|
Assert(bounds || !(flags & WORD_SIMILARITY_STRICT));
|
|
|
|
/* Select appropriate threshold */
|
|
threshold = (flags & WORD_SIMILARITY_STRICT) ?
|
|
strict_word_similarity_threshold :
|
|
word_similarity_threshold;
|
|
|
|
/*
|
|
* Consider first trigram as initial lower bound for strict word
|
|
* similarity, or initialize it later with first trigram present for plain
|
|
* word similarity.
|
|
*/
|
|
lower = (flags & WORD_SIMILARITY_STRICT) ? 0 : -1;
|
|
|
|
/* Memorise last position of each trigram */
|
|
lastpos = (int *) palloc(sizeof(int) * len);
|
|
memset(lastpos, -1, sizeof(int) * len);
|
|
|
|
for (i = 0; i < len2; i++)
|
|
{
|
|
int trgindex;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/* Get index of next trigram */
|
|
trgindex = trg2indexes[i];
|
|
|
|
/* Update last position of this trigram */
|
|
if (lower >= 0 || found[trgindex])
|
|
{
|
|
if (lastpos[trgindex] < 0)
|
|
{
|
|
ulen2++;
|
|
if (found[trgindex])
|
|
count++;
|
|
}
|
|
lastpos[trgindex] = i;
|
|
}
|
|
|
|
/*
|
|
* Adjust upper bound if trigram is upper bound of word for strict
|
|
* word similarity, or if trigram is present in required substring for
|
|
* plain word similarity
|
|
*/
|
|
if ((flags & WORD_SIMILARITY_STRICT) ? (bounds[i] & TRGM_BOUND_RIGHT)
|
|
: found[trgindex])
|
|
{
|
|
int prev_lower,
|
|
tmp_ulen2,
|
|
tmp_lower,
|
|
tmp_count;
|
|
|
|
upper = i;
|
|
if (lower == -1)
|
|
{
|
|
lower = i;
|
|
ulen2 = 1;
|
|
}
|
|
|
|
smlr_cur = CALCSML(count, ulen1, ulen2);
|
|
|
|
/* Also try to adjust lower bound for greater similarity */
|
|
tmp_count = count;
|
|
tmp_ulen2 = ulen2;
|
|
prev_lower = lower;
|
|
for (tmp_lower = lower; tmp_lower <= upper; tmp_lower++)
|
|
{
|
|
float smlr_tmp;
|
|
int tmp_trgindex;
|
|
|
|
/*
|
|
* Adjust lower bound only if trigram is lower bound of word
|
|
* for strict word similarity, or consider every trigram as
|
|
* lower bound for plain word similarity.
|
|
*/
|
|
if (!(flags & WORD_SIMILARITY_STRICT)
|
|
|| (bounds[tmp_lower] & TRGM_BOUND_LEFT))
|
|
{
|
|
smlr_tmp = CALCSML(tmp_count, ulen1, tmp_ulen2);
|
|
if (smlr_tmp > smlr_cur)
|
|
{
|
|
smlr_cur = smlr_tmp;
|
|
ulen2 = tmp_ulen2;
|
|
lower = tmp_lower;
|
|
count = tmp_count;
|
|
}
|
|
|
|
/*
|
|
* If we only check that word similarity is greater than
|
|
* threshold we do not need to calculate a maximum
|
|
* similarity.
|
|
*/
|
|
if ((flags & WORD_SIMILARITY_CHECK_ONLY)
|
|
&& smlr_cur >= threshold)
|
|
break;
|
|
}
|
|
|
|
tmp_trgindex = trg2indexes[tmp_lower];
|
|
if (lastpos[tmp_trgindex] == tmp_lower)
|
|
{
|
|
tmp_ulen2--;
|
|
if (found[tmp_trgindex])
|
|
tmp_count--;
|
|
}
|
|
}
|
|
|
|
smlr_max = Max(smlr_max, smlr_cur);
|
|
|
|
/*
|
|
* if we only check that word similarity is greater than threshold
|
|
* we do not need to calculate a maximum similarity.
|
|
*/
|
|
if ((flags & WORD_SIMILARITY_CHECK_ONLY) && smlr_max >= threshold)
|
|
break;
|
|
|
|
for (tmp_lower = prev_lower; tmp_lower < lower; tmp_lower++)
|
|
{
|
|
int tmp_trgindex;
|
|
|
|
tmp_trgindex = trg2indexes[tmp_lower];
|
|
if (lastpos[tmp_trgindex] == tmp_lower)
|
|
lastpos[tmp_trgindex] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
pfree(lastpos);
|
|
|
|
return smlr_max;
|
|
}
|
|
|
|
/*
|
|
* Calculate word similarity.
|
|
* This function prepare two arrays: "trg2indexes" and "found". Then this arrays
|
|
* are used to calculate word similarity using iterate_word_similarity().
|
|
*
|
|
* "trg2indexes" is array which stores indexes of the array "found".
|
|
* In other words:
|
|
* trg2indexes[j] = i;
|
|
* found[i] = true (or false);
|
|
* If found[i] == true then there is trigram trg2[j] in array "trg1".
|
|
* If found[i] == false then there is not trigram trg2[j] in array "trg1".
|
|
*
|
|
* str1: search pattern string, of length slen1 bytes.
|
|
* str2: text in which we are looking for a word, of length slen2 bytes.
|
|
* flags: set of boolean flags parameterizing similarity calculation.
|
|
*
|
|
* Returns word similarity.
|
|
*/
|
|
static float4
|
|
calc_word_similarity(char *str1, int slen1, char *str2, int slen2,
|
|
uint8 flags)
|
|
{
|
|
bool *found;
|
|
pos_trgm *ptrg;
|
|
trgm *trg1;
|
|
trgm *trg2;
|
|
int len1,
|
|
len2,
|
|
len,
|
|
i,
|
|
j,
|
|
ulen1;
|
|
int *trg2indexes;
|
|
float4 result;
|
|
TrgmBound *bounds;
|
|
|
|
protect_out_of_mem(slen1 + slen2);
|
|
|
|
/* Make positional trigrams */
|
|
trg1 = (trgm *) palloc(sizeof(trgm) * (slen1 / 2 + 1) * 3);
|
|
trg2 = (trgm *) palloc(sizeof(trgm) * (slen2 / 2 + 1) * 3);
|
|
if (flags & WORD_SIMILARITY_STRICT)
|
|
bounds = (TrgmBound *) palloc0(sizeof(TrgmBound) * (slen2 / 2 + 1) * 3);
|
|
else
|
|
bounds = NULL;
|
|
|
|
len1 = generate_trgm_only(trg1, str1, slen1, NULL);
|
|
len2 = generate_trgm_only(trg2, str2, slen2, bounds);
|
|
|
|
ptrg = make_positional_trgm(trg1, len1, trg2, len2);
|
|
len = len1 + len2;
|
|
qsort(ptrg, len, sizeof(pos_trgm), comp_ptrgm);
|
|
|
|
pfree(trg1);
|
|
pfree(trg2);
|
|
|
|
/*
|
|
* Merge positional trigrams array: enumerate each trigram and find its
|
|
* presence in required word.
|
|
*/
|
|
trg2indexes = (int *) palloc(sizeof(int) * len2);
|
|
found = (bool *) palloc0(sizeof(bool) * len);
|
|
|
|
ulen1 = 0;
|
|
j = 0;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
if (i > 0)
|
|
{
|
|
int cmp = CMPTRGM(ptrg[i - 1].trg, ptrg[i].trg);
|
|
|
|
if (cmp != 0)
|
|
{
|
|
if (found[j])
|
|
ulen1++;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
if (ptrg[i].index >= 0)
|
|
{
|
|
trg2indexes[ptrg[i].index] = j;
|
|
}
|
|
else
|
|
{
|
|
found[j] = true;
|
|
}
|
|
}
|
|
if (found[j])
|
|
ulen1++;
|
|
|
|
/* Run iterative procedure to find maximum similarity with word */
|
|
result = iterate_word_similarity(trg2indexes, found, ulen1, len2, len,
|
|
flags, bounds);
|
|
|
|
pfree(trg2indexes);
|
|
pfree(found);
|
|
pfree(ptrg);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Extract the next non-wildcard part of a search string, i.e. a word bounded
|
|
* by '_' or '%' meta-characters, non-word characters or string end.
|
|
*
|
|
* str: source string, of length lenstr bytes (need not be null-terminated)
|
|
* buf: where to return the substring (must be long enough)
|
|
* *bytelen: receives byte length of the found substring
|
|
* *charlen: receives character length of the found substring
|
|
*
|
|
* Returns pointer to end+1 of the found substring in the source string.
|
|
* Returns NULL if no word found (in which case buf, bytelen, charlen not set)
|
|
*
|
|
* If the found word is bounded by non-word characters or string boundaries
|
|
* then this function will include corresponding padding spaces into buf.
|
|
*/
|
|
static const char *
|
|
get_wildcard_part(const char *str, int lenstr,
|
|
char *buf, int *bytelen, int *charlen)
|
|
{
|
|
const char *beginword = str;
|
|
const char *endword;
|
|
char *s = buf;
|
|
bool in_leading_wildcard_meta = false;
|
|
bool in_trailing_wildcard_meta = false;
|
|
bool in_escape = false;
|
|
int clen;
|
|
|
|
/*
|
|
* Find the first word character, remembering whether preceding character
|
|
* was wildcard meta-character. Note that the in_escape state persists
|
|
* from this loop to the next one, since we may exit at a word character
|
|
* that is in_escape.
|
|
*/
|
|
while (beginword - str < lenstr)
|
|
{
|
|
if (in_escape)
|
|
{
|
|
if (ISWORDCHR(beginword))
|
|
break;
|
|
in_escape = false;
|
|
in_leading_wildcard_meta = false;
|
|
}
|
|
else
|
|
{
|
|
if (ISESCAPECHAR(beginword))
|
|
in_escape = true;
|
|
else if (ISWILDCARDCHAR(beginword))
|
|
in_leading_wildcard_meta = true;
|
|
else if (ISWORDCHR(beginword))
|
|
break;
|
|
else
|
|
in_leading_wildcard_meta = false;
|
|
}
|
|
beginword += pg_mblen(beginword);
|
|
}
|
|
|
|
/*
|
|
* Handle string end.
|
|
*/
|
|
if (beginword - str >= lenstr)
|
|
return NULL;
|
|
|
|
/*
|
|
* Add left padding spaces if preceding character wasn't wildcard
|
|
* meta-character.
|
|
*/
|
|
*charlen = 0;
|
|
if (!in_leading_wildcard_meta)
|
|
{
|
|
if (LPADDING > 0)
|
|
{
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
if (LPADDING > 1)
|
|
{
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy data into buf until wildcard meta-character, non-word character or
|
|
* string boundary. Strip escapes during copy.
|
|
*/
|
|
endword = beginword;
|
|
while (endword - str < lenstr)
|
|
{
|
|
clen = pg_mblen(endword);
|
|
if (in_escape)
|
|
{
|
|
if (ISWORDCHR(endword))
|
|
{
|
|
memcpy(s, endword, clen);
|
|
(*charlen)++;
|
|
s += clen;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Back up endword to the escape character when stopping at an
|
|
* escaped char, so that subsequent get_wildcard_part will
|
|
* restart from the escape character. We assume here that
|
|
* escape chars are single-byte.
|
|
*/
|
|
endword--;
|
|
break;
|
|
}
|
|
in_escape = false;
|
|
}
|
|
else
|
|
{
|
|
if (ISESCAPECHAR(endword))
|
|
in_escape = true;
|
|
else if (ISWILDCARDCHAR(endword))
|
|
{
|
|
in_trailing_wildcard_meta = true;
|
|
break;
|
|
}
|
|
else if (ISWORDCHR(endword))
|
|
{
|
|
memcpy(s, endword, clen);
|
|
(*charlen)++;
|
|
s += clen;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
endword += clen;
|
|
}
|
|
|
|
/*
|
|
* Add right padding spaces if next character isn't wildcard
|
|
* meta-character.
|
|
*/
|
|
if (!in_trailing_wildcard_meta)
|
|
{
|
|
if (RPADDING > 0)
|
|
{
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
if (RPADDING > 1)
|
|
{
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
}
|
|
}
|
|
}
|
|
|
|
*bytelen = s - buf;
|
|
return endword;
|
|
}
|
|
|
|
/*
|
|
* Generates trigrams for wildcard search string.
|
|
*
|
|
* Returns array of trigrams that must occur in any string that matches the
|
|
* wildcard string. For example, given pattern "a%bcd%" the trigrams
|
|
* " a", "bcd" would be extracted.
|
|
*/
|
|
TRGM *
|
|
generate_wildcard_trgm(const char *str, int slen)
|
|
{
|
|
TRGM *trg;
|
|
char *buf,
|
|
*buf2;
|
|
trgm *tptr;
|
|
int len,
|
|
charlen,
|
|
bytelen;
|
|
const char *eword;
|
|
|
|
protect_out_of_mem(slen);
|
|
|
|
trg = (TRGM *) palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) * 3);
|
|
trg->flag = ARRKEY;
|
|
SET_VARSIZE(trg, TRGMHDRSIZE);
|
|
|
|
if (slen + LPADDING + RPADDING < 3 || slen == 0)
|
|
return trg;
|
|
|
|
tptr = GETARR(trg);
|
|
|
|
/* Allocate a buffer for blank-padded, but not yet case-folded, words */
|
|
buf = palloc(sizeof(char) * (slen + 4));
|
|
|
|
/*
|
|
* Extract trigrams from each substring extracted by get_wildcard_part.
|
|
*/
|
|
eword = str;
|
|
while ((eword = get_wildcard_part(eword, slen - (eword - str),
|
|
buf, &bytelen, &charlen)) != NULL)
|
|
{
|
|
#ifdef IGNORECASE
|
|
buf2 = lowerstr_with_len(buf, bytelen);
|
|
bytelen = strlen(buf2);
|
|
#else
|
|
buf2 = buf;
|
|
#endif
|
|
|
|
/*
|
|
* count trigrams
|
|
*/
|
|
tptr = make_trigrams(tptr, buf2, bytelen, charlen);
|
|
|
|
#ifdef IGNORECASE
|
|
pfree(buf2);
|
|
#endif
|
|
}
|
|
|
|
pfree(buf);
|
|
|
|
if ((len = tptr - GETARR(trg)) == 0)
|
|
return trg;
|
|
|
|
/*
|
|
* Make trigrams unique.
|
|
*/
|
|
if (len > 1)
|
|
{
|
|
qsort((void *) GETARR(trg), len, sizeof(trgm), comp_trgm);
|
|
len = qunique(GETARR(trg), len, sizeof(trgm), comp_trgm);
|
|
}
|
|
|
|
SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
|
|
|
|
return trg;
|
|
}
|
|
|
|
uint32
|
|
trgm2int(trgm *ptr)
|
|
{
|
|
uint32 val = 0;
|
|
|
|
val |= *(((unsigned char *) ptr));
|
|
val <<= 8;
|
|
val |= *(((unsigned char *) ptr) + 1);
|
|
val <<= 8;
|
|
val |= *(((unsigned char *) ptr) + 2);
|
|
|
|
return val;
|
|
}
|
|
|
|
Datum
|
|
show_trgm(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in = PG_GETARG_TEXT_PP(0);
|
|
TRGM *trg;
|
|
Datum *d;
|
|
ArrayType *a;
|
|
trgm *ptr;
|
|
int i;
|
|
|
|
trg = generate_trgm(VARDATA_ANY(in), VARSIZE_ANY_EXHDR(in));
|
|
d = (Datum *) palloc(sizeof(Datum) * (1 + ARRNELEM(trg)));
|
|
|
|
for (i = 0, ptr = GETARR(trg); i < ARRNELEM(trg); i++, ptr++)
|
|
{
|
|
text *item = (text *) palloc(VARHDRSZ + Max(12, pg_database_encoding_max_length() * 3));
|
|
|
|
if (pg_database_encoding_max_length() > 1 && !ISPRINTABLETRGM(ptr))
|
|
{
|
|
snprintf(VARDATA(item), 12, "0x%06x", trgm2int(ptr));
|
|
SET_VARSIZE(item, VARHDRSZ + strlen(VARDATA(item)));
|
|
}
|
|
else
|
|
{
|
|
SET_VARSIZE(item, VARHDRSZ + 3);
|
|
CPTRGM(VARDATA(item), ptr);
|
|
}
|
|
d[i] = PointerGetDatum(item);
|
|
}
|
|
|
|
a = construct_array_builtin(d, ARRNELEM(trg), TEXTOID);
|
|
|
|
for (i = 0; i < ARRNELEM(trg); i++)
|
|
pfree(DatumGetPointer(d[i]));
|
|
|
|
pfree(d);
|
|
pfree(trg);
|
|
PG_FREE_IF_COPY(in, 0);
|
|
|
|
PG_RETURN_POINTER(a);
|
|
}
|
|
|
|
float4
|
|
cnt_sml(TRGM *trg1, TRGM *trg2, bool inexact)
|
|
{
|
|
trgm *ptr1,
|
|
*ptr2;
|
|
int count = 0;
|
|
int len1,
|
|
len2;
|
|
|
|
ptr1 = GETARR(trg1);
|
|
ptr2 = GETARR(trg2);
|
|
|
|
len1 = ARRNELEM(trg1);
|
|
len2 = ARRNELEM(trg2);
|
|
|
|
/* explicit test is needed to avoid 0/0 division when both lengths are 0 */
|
|
if (len1 <= 0 || len2 <= 0)
|
|
return (float4) 0.0;
|
|
|
|
while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2)
|
|
{
|
|
int res = CMPTRGM(ptr1, ptr2);
|
|
|
|
if (res < 0)
|
|
ptr1++;
|
|
else if (res > 0)
|
|
ptr2++;
|
|
else
|
|
{
|
|
ptr1++;
|
|
ptr2++;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If inexact then len2 is equal to count, because we don't know actual
|
|
* length of second string in inexact search and we can assume that count
|
|
* is a lower bound of len2.
|
|
*/
|
|
return CALCSML(count, len1, inexact ? count : len2);
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns whether trg2 contains all trigrams in trg1.
|
|
* This relies on the trigram arrays being sorted.
|
|
*/
|
|
bool
|
|
trgm_contained_by(TRGM *trg1, TRGM *trg2)
|
|
{
|
|
trgm *ptr1,
|
|
*ptr2;
|
|
int len1,
|
|
len2;
|
|
|
|
ptr1 = GETARR(trg1);
|
|
ptr2 = GETARR(trg2);
|
|
|
|
len1 = ARRNELEM(trg1);
|
|
len2 = ARRNELEM(trg2);
|
|
|
|
while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2)
|
|
{
|
|
int res = CMPTRGM(ptr1, ptr2);
|
|
|
|
if (res < 0)
|
|
return false;
|
|
else if (res > 0)
|
|
ptr2++;
|
|
else
|
|
{
|
|
ptr1++;
|
|
ptr2++;
|
|
}
|
|
}
|
|
if (ptr1 - GETARR(trg1) < len1)
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return a palloc'd boolean array showing, for each trigram in "query",
|
|
* whether it is present in the trigram array "key".
|
|
* This relies on the "key" array being sorted, but "query" need not be.
|
|
*/
|
|
bool *
|
|
trgm_presence_map(TRGM *query, TRGM *key)
|
|
{
|
|
bool *result;
|
|
trgm *ptrq = GETARR(query),
|
|
*ptrk = GETARR(key);
|
|
int lenq = ARRNELEM(query),
|
|
lenk = ARRNELEM(key),
|
|
i;
|
|
|
|
result = (bool *) palloc0(lenq * sizeof(bool));
|
|
|
|
/* for each query trigram, do a binary search in the key array */
|
|
for (i = 0; i < lenq; i++)
|
|
{
|
|
int lo = 0;
|
|
int hi = lenk;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) / 2;
|
|
int res = CMPTRGM(ptrq, ptrk + mid);
|
|
|
|
if (res < 0)
|
|
hi = mid;
|
|
else if (res > 0)
|
|
lo = mid + 1;
|
|
else
|
|
{
|
|
result[i] = true;
|
|
break;
|
|
}
|
|
}
|
|
ptrq++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Datum
|
|
similarity(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
TRGM *trg1,
|
|
*trg2;
|
|
float4 res;
|
|
|
|
trg1 = generate_trgm(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1));
|
|
trg2 = generate_trgm(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2));
|
|
|
|
res = cnt_sml(trg1, trg2, false);
|
|
|
|
pfree(trg1);
|
|
pfree(trg2);
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
|
|
PG_RETURN_FLOAT4(res);
|
|
}
|
|
|
|
Datum
|
|
word_similarity(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
0);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_FLOAT4(res);
|
|
}
|
|
|
|
Datum
|
|
strict_word_similarity(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
WORD_SIMILARITY_STRICT);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_FLOAT4(res);
|
|
}
|
|
|
|
Datum
|
|
similarity_dist(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 res = DatumGetFloat4(DirectFunctionCall2(similarity,
|
|
PG_GETARG_DATUM(0),
|
|
PG_GETARG_DATUM(1)));
|
|
|
|
PG_RETURN_FLOAT4(1.0 - res);
|
|
}
|
|
|
|
Datum
|
|
similarity_op(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 res = DatumGetFloat4(DirectFunctionCall2(similarity,
|
|
PG_GETARG_DATUM(0),
|
|
PG_GETARG_DATUM(1)));
|
|
|
|
PG_RETURN_BOOL(res >= similarity_threshold);
|
|
}
|
|
|
|
Datum
|
|
word_similarity_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
WORD_SIMILARITY_CHECK_ONLY);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_BOOL(res >= word_similarity_threshold);
|
|
}
|
|
|
|
Datum
|
|
word_similarity_commutator_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
WORD_SIMILARITY_CHECK_ONLY);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_BOOL(res >= word_similarity_threshold);
|
|
}
|
|
|
|
Datum
|
|
word_similarity_dist_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
0);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_FLOAT4(1.0 - res);
|
|
}
|
|
|
|
Datum
|
|
word_similarity_dist_commutator_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
0);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_FLOAT4(1.0 - res);
|
|
}
|
|
|
|
Datum
|
|
strict_word_similarity_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
WORD_SIMILARITY_CHECK_ONLY | WORD_SIMILARITY_STRICT);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_BOOL(res >= strict_word_similarity_threshold);
|
|
}
|
|
|
|
Datum
|
|
strict_word_similarity_commutator_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
WORD_SIMILARITY_CHECK_ONLY | WORD_SIMILARITY_STRICT);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_BOOL(res >= strict_word_similarity_threshold);
|
|
}
|
|
|
|
Datum
|
|
strict_word_similarity_dist_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
WORD_SIMILARITY_STRICT);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_FLOAT4(1.0 - res);
|
|
}
|
|
|
|
Datum
|
|
strict_word_similarity_dist_commutator_op(PG_FUNCTION_ARGS)
|
|
{
|
|
text *in1 = PG_GETARG_TEXT_PP(0);
|
|
text *in2 = PG_GETARG_TEXT_PP(1);
|
|
float4 res;
|
|
|
|
res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
|
|
VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
|
|
WORD_SIMILARITY_STRICT);
|
|
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
PG_RETURN_FLOAT4(1.0 - res);
|
|
}
|